La química en la nanociencia

El futuro de la humanidad dependerá de tener instrumentos útiles en nuestro trabajo, tecnologíaa, ocio y vida cotidiana. Estos instrumentos se fabricarán con materiales adecuados. Por razones prácticas (propiedades mejoradas y modulables) y energéticas, se tenderá a minimizar el tamaño de los artilugios.

Para alcanzar estos objetivos serán fundamentales los avances científicos y tecnológicos en nanociencia, en la que la química tiene mucho que aportar en el diseño, preparación y caracterización de nanomateriales.

La nanociencia y sus aplicaciónes (nanotecnología) es un áreas de la ciencia de los materiales que aborda el estudio de objetos (una nanopartícula, NP) en escala nanométrica (orden de escala de centenares de nanometros, nm, 1 nm = 10-9). Ya existen numerosas aplicaciones industriales de los nanomateriales, con más de  1000 productos en el mercado que contienen nanopartículas (NPs), desde productos de cosmética a material deportivo. Esta es un área de negocio con un desarrollo muy amplio y unas excelentes perspectivas de futuro.

Actualmente existen muchos materiales nanoparticulados, especialmente derivados de metales de transición, como el oro, los óxidos de hierro, el dióxido de titano, el óxido de zinc o el paladio, que se están aplicando en diversas investigaciones en fase académica, tales como la catálisis, transferencia energética, materiales magnéticos, etc. Otras aplicaciones prácticas de la nanotecnología serán en el desarrollo de equipos  pequeños para monitorización (ambiental, salud, etc.) o en la fabricación de nanocápsulas para transporte de fármacos. Se podrán liberar fármacos en los órganos adecuados del paciente sin afectar a otras partes del cuerpo. Las nanocápsulas podrán dirigirse al sitio adecuado, por ejemplo usando materiales magnéticos.

Uno de los objetivos de la nanociencia es obtener NPs  con estructuras determinadas (a medida) que se puedan correlacionar con las propiedades, lo que es importante para el diseño de nanomateriales con propiedades definidas (“materiales a medida”, “tailored’). Para alcanzar este objetivo se ha intentando combinar las propiedades de NPs de diversos tipos. Se ha empleado la mezcla física de las mismas, pero el resultado no ha sido satisfactorio. Se piensa que la combinación química de NPs puede ser un método más adecuado, pues permitiría combinar diferentes NPs a voluntad, con propiedades mejoradas (efecto sinérgico), con mayor control de la estructura del material, y mayor estabilidad.

En el último número de ACS Nano (2012, volumen 6, número 1) se publica un articulo (Hamers y col, ACS Nano 2012, 6, 310-318) en el que se ha diseñado una estrategia para la obtención de NPs híbridas formadas por la combinación de óxidos de wolframio (WO3) y titanio (TiO2) a través de reacciones de [3+2] de alquinos con azidas (reacción de Huisgen) que ha sido convenientemente actualizada por Sharpless (Premio Nobel de Química en 2001 por el desarrollo de métodos de síntesis asimétrica a través de reacciones de oxidación) como uno de los métodos preferido para realizar la click chemistry; y que ha sido ampliamente usada en múltiples aplicaciones, desde la biomedicina a la ciencia de los materiales.

En esta investigación, los óxidos nanoparticulados (WO3 y TiO2)  son modificados con ligandos orgánicos con funcionalidad azida y alquino, respectivamente y se hacen reaccionar por el método desarrollado por Sharpless.

(De Hamers y col, ACS Nano 2012, 6, 310-318)

Los óxidos metálicos nanoparticulados, como el WO3 y el TiO2, son capaces de facilitar la separación y transferencia de carga promovidas por radiación lumínica. Esta propiedad hace que estos materiales sean muy atractivos para producir células fotovoltaicas, adecuados para fabricar paneles solares. Otra aplicación de estos nanomateriales es en fotocatálisis, es decir la aceleración de reacciones químicas por la radiación luminosa.

La posibilidad de mezclar varios tipos de óxidos metálicos nanoparticulados puede proporcionar mejores materiales para lograr estos objetivos. El trabajo descrito en ACS Nano describe la síntesis y caracterización de estos materiales y comprueban mejoras en las propiedades de los materiales híbridos en comparación con las NPs individuales, entre ellas, una eficaz transferencia de carga promovida por la luz y eficiente degradación fotoquímica del colorante azul de metileno.

Aunque las aplicaciones prácticas de esta investigación son evidentes, no hay que olvidar que es aún investigación básica; se están poniendo los cimientos para que en poco tiempo se puedan realizar aplicaciones tecnológicas. Otro aspecto importante de esta investigación es que se han desarrollado materiales con los que se pueden estudiar procesos básicos en ciencias físicas y químicas, como son entender procesos de transferencia electrónica e interacción de la luz con la materia.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Máster de química en la universidad de Granada

Las copias de las conferencias que impartí en la universidad de Granada, entre el 12 y el 15 de diciembre de 2011 se pueden descargar en los siguientes enlaces.

Los avances de la química y su impacto en la sociedad: Una visión general. Enlace.

¿Lo común de cada día?: ¡La química! Enlace.

¿Natural, sintético? ¡Todo es química! Enlace.

El futuro: una visión desde la química. Enlace.

master_quimica_ugr1

Bernardo Herradón García
CSIC
b.herradon@csic.es