Linus Pauling: uno de los tres grandes de la historia de la química. Tendiendo puentes entre la química, la biología y la física.

A veces me han preguntado cuales son los químicos más importantes de todos los tiempos. Siempre es difícil elegir entre tanto científico ilustre. Pero me lanzo a la piscina y digo “si tengo que elegir a uno, es Mendeleev; si son dos, añado a Pauling; y si hay que elegir un tercero, propongo a Lavoisier”

¿Por qué esa elección? ¿Tienen algo en común estos tres químicos de épocas tan distantes y que usaron técnicas y teorías tan diferentes?

Cronológicamente, el primero fue Antoine-Laurent Lavoisier (1743-1794), con el que la química empezó a ser una ciencia moderna basada en el método científico. A partir de sus investigaciones, se pudieron obtener numerosos datos experimentales sobre los elementos, compuestos químicos y sus transformaciones.

Dimitri Mendeleev (1834-1907) fue fundamental en sistematizar el enorme caudal de resultados experimentales obtenidos en las décadas precedentes, identificando similitudes y diferencias entre los elementos químicos; y, lo que es más importante, predecir nuevos resultados. La culminación de sus investigaciones lo constituye la identificación de la periodicidad de las propiedades químicas, que dieron lugar a  la Tabla periódica de los elementos químicos. Esta es uno de los iconos de la ciencia y posiblemente la mayor aportación de la química a la historia de la cultura universal (entendiendo como cultura, también la científica; por supuesto). Crear la tabla periódica en una época en la que no se conocía la estructura íntima de la materia constituye un hito heurístico.

El tercero de los grandes es Linus Pauling, del que hoy se conmemora el 111º aniversario de su nacimiento y que, en cierto modo, expandió el trabajo de Mendeleev; haciendo contribuciones que permitieron entender como los elementos químicos (a través de los átomos, ya aceptados por toda la comunidad científica) se combinan entre sí a través de enlaces químicos.

Pauling estaba convencido de que entender la estructura es la clave para descifrar algunos de los misterios del universo. Para llegar a este conocimiento, Pauling usó las herramientas de la física, ilustrada por la mecánica cuántica, siendo un pionero del uso de la mecánica cuántica en química y, de hecho, uno de los fundadores de la química cuántica.

Pauling nació en Oregon el 28 de febrero de 1901. Quedó huérfano de padre siendo muy joven. Por problemas económicos familiares, se le recomendó que estudiase una carrera práctica que le permitiese encontrar trabajo pronto. Por eso eligió estudiar ingeniería química en la Oregon State University (OSU), graduándose en 1922.

Desde muy joven, pensaba que la física era fundamental para entender el comportamiento químico y decidió realizar la tesis doctoral en química física. Solicito realizar la tesis en el grupo de Arthur Noyes, en el Instituto Tecnológico de California (Caltech), uno de los químicos físicos más prestigiosos de la época. Parece ser que Noyes dudó en su contratación porque Pauling era  un ingeniero químico que no había asistido a cursos de química física avanzada. Sin embargo, convenció a Noyes y éste le admitió en su grupo; donde terminó la tesis en 1925.

Becado por la Fundación Guggenheim (en la época en la que ser becario era un honor y no era una palabra denigrada como actualmente) realizó estancias postdoctorales entre 1926 y 1927. Reconociendo el papel que la ciencia europea estaba realizando para entender la estructura de la materia, trabajó en Copenhage con Niels Bohr (Premio Nobel de Física en 1922), en Münich con Arnold Sommerfeld (no recibió el Premio Nobel, pero lo mereció varias veces), en Londres con William H. Bragg (Premio Nobel de Física en 1915) y en Göttingen con Max Born (Premio Nobel de Física en 1954). Sin duda, recibió una excelente formación teórica y experimental en mecánica cuántica y en cristalografía; en definitiva, en las estructuras de sustancias químicas, ya sean átomos, sales o moléculas.

De vuelta a Estados Unidos, fue contratado como profesor en Caltech donde permaneció hasta su jubilación en 1973. Tras esta fecha y hasta su muerte, el 19 de agosto de 1994, Pauling trabajó como profesor emérito en la Stanford University, donde se creó el Linus Pauling Institute (LPI). Pauling investigó de manera continuada durante 72 años, siendo un testigo privilegiado y protagonista del mayor desarrollo de la historia de la química. Posteriormente, su legado fue trasladado desde el LPI a su Alma Mater, la OSU.

Pauling fue un excelente docente y divulgador de la ciencia. En esta última faceta era frecuente su participación en medios diversos explicando ciencia. Un ejemplo se puede encontrar en el vídeo http://www.youtube.com/watch?v=KDDQMTfMZxE.

En su faceta docente, parece que era un profesor espectacular al que le gustaba ilustrar sus explicaciones teóricas con demostraciones prácticas en clase. Hay una característica que le iguala con Mendeleev. Cuando éste tuvo que explicar Química general a sus alumnos de primer curso de la Universidad de San Petersburgo, no encontró ningún libro de texto que le satisficiera; por lo que decidió escribir su libro Principios de química, cuya redacción le inspiró para crear la tabla periódica. Lo mismo le pasó a Pauling. Cuando tuvo que explicar Química general a alumnos de primer curso de Caltech, se dio cuenta que lo mejor era escribir su propio libro de texto. Así nació su libro General Chemistry, cuya primera edición se publicó en 1947, constituyendo un clásico de la enseñanza de la química desde entonces.

Realizó aportaciones fundamentales en las bases teóricas de la química, usando la mecánica cuántica para explicar la estructura molecular y el enlace químico. Introdujo conceptos fundamentales como la resonancia y la hibridación. De estos estudios surgió el libro Introduction to Quantum Mechanics with Applications to Chemistry (escrito en colaboración con E. Bright Wilson) en 1935; un clásico en química cuántica.

Pauling fue un pionero en el uso de la cristalografía en química, siendo el primer tema que desarrolló a su vuelta a Caltech en 1927. El uso de la difracción de rayos X y de la difracción de electrones le permitió profundizar en la estructura de compuestos inorgánicos (principalmente) y orgánicos y empezar a entender la naturaleza del enlace químico. De estas investigaciones surgieron las reglas de Pauling para predecir la estructura cristalina de compuestos iónicos y la escala de electronegatividad que desarrolló, que permitió determinar el carácter iónico/covalente (parcial) de los enlaces químicos.

Con estas investigaciones, Pauling se convirtió en la máxima autoridad en química estructural de la historia. Su amplio conocimiento lo plasmó en el libro The Nature of the Chemical Bond and the Structure of Molecules and Crystals; publicado por primera vez en 1939, convirtiéndose en uno de los libros científicos clásicos.

A mediados de la década de los años 1930s, Pauling empezó a interesarse en moléculas de interés biológico, especialmente proteínas. Pensaba que la función podría entenderse a partir de su estructura y que ésta podría determinarse por los métodos que él estaba usando para moléculas pequeñas, especialmente métodos de difracción.

Ya en 1934, en conexión con sus investigaciones sobre magnetismo de sustancias químicas, determinó las propiedades magnéticas de la hemoglobina. Ésta es la proteína transportadora de oxígeno en los glóbulos rojos de la sangre en los mamíferos y su estructura y funcionamiento son vitales para entender el mecanismo molecular del transporte de oxígeno y las consecuencias sobre la salud que puede tener su malfuncionamiento.

En 1940 hizo la propuesta novedosa de que la especificidad de las interacciones biológicas se debe a la complementariedad molecular, lo que permite explicar las interacciones entre los antígenos y anticuerpos (con implicaciones en inmunología) y la catálisis enzimática. En esta última área, propone que el aumento de la velocidad de una reacción enzimática se debe a la estabilización del estado de transición por interacción con la enzima. Esta hipótesis explica muchos resultados experimentales y sirve para el diseño de fármacos por inhibición enzimática.

Basándose en la complementariedad molecular, Pauling propuso en 1946 que un gen podría consistir en dos hebras mutuamente complementarias, un concepto que anticipó la propuesta de Watson y Crick para la estructura del DNA.

En los años 1940s, Pauling creó el área de la medicina molecular al proponer que la anemia falciforme estaba causada por la mutación de un único aminoácido de los 457 que forman la cadena monomérica de hemoglobina.

En 1948 propuso las estructuras secundarias de las cadenas peptídicas: la hélice alfa y la lámina beta. Su propuesta fue teórica basada en el empleo de modelos moleculares y su profundo conocimiento de la estructura molecular e interacciones no covalente. Poco después se encontró experimentalmente (por difracción de rayos X) que estas propuestas eran motivos estructurales frecuentes en la estructura de péptidos y proteínas.

Con sus propuestas y resultados experimentales sobre la estructura de proteínas, mecanismos de reacciones enzimáticas, complementariedad de proteínas y ácidos nucleicos, y en medicina molecular; se puede considerar a Pauling uno de los fundadores de la biología molecular y su moderna ramificación, la biomedicina.

En la época del Macarthismo en Estados Unidos, estuvo castigado sin pasaporte, lo que le impidió viajar a Inglaterra a para ver las fotografías de la difracción de rayos X tomadas por Rosalind Franklin. Si hubiese visto las fotografías, seguramente hubiese propuesto la estructura de doble hélice del DNA antes que Watson y Crick y la historia de la ciencia hubiese cambiado. Pero esto se ciencia ficción.

Ya en esa época había recibido el Premio Nobel de Química por sus aportaciones a la química estructural, Pacifista convencido y activo (de ahñi los problemas en su país), defendió el desarme nuclear. Por estas acciones, recibió el Premio Nobel de la Paz de 1962 (entregado en 1963). Ha sido la única persona que ha recibido dos Premios Nobel de manera individual: Química (1954) y Paz (1962).

En definitiva, un gigante de la ciencia y de la historia de la humanidad.

Nota: Este post participa en la XII Edición del Carnaval de Química, que aloja el  blog Historias con mucha química (como todas) que administra María Docavo y en la X Edición del Carnaval de Biología, que aloja el blog Scientia que administra José Manuel López Nicolás.

Bernardo Herradón García
CSIC
b.herradon@csic.es

La historia del número de Avogadro y su valor numérico

El año pasado se cumplieron 200 de la hipótesis (ahora ley) de Avogadro. Si los químicos de la época hubiesen aceptado su propuesta, la química hubiese avanzado rápidamente. La hipótesis de Avogadro establece que a igual de temperatura y presión, volúmenes iguales de gases contienen el mismo número de moléculas. El número de moléculas en un mol de sustancia es, por definición, el Número de Avogadro. Por supuesto, Avogadro no bautizó el número con su nombre ni determinó su valor. Ambas cosas las propuso Jean Perrin, Premio Nobel de Física en 1926. Para determinar el valor del Número de Avogadro se basó en un desarrollo teórico realizado por Albert Einstein en 1905, su año milagroso. Este artículo ha sido contado en otro post, recomendando el excelente libro Einstein, 1905. Un año milagroso. Cinco artículos que cambiaron la física.

avogadro

avogadro_numero_taza

La hipótesis de Avogadro explicaba algún hecho aparentemente inexplicable a principios del siglo XIX, especialmente en las reacciones de gases; por ejemplo, que dos volúmenes de hidrógeno se combinen con un volumen de oxígeno para dar (sólo) dos volúmenes de vapor de agua.
De la hipótesis de Avogadro se desprende la definición de molécula, “como el agregado más pequeño de átomos, iguales o diferentes, capaces de existir independientemente y poseer las propiedades de la sustancia que se encuentra constituida por un conjunto de moléculas“. En esta definición está recogida la realidad de que los átomos individuales no existen y que incluso los elementos químicos existen como moléculas en fase gas. Analizando los resultados experimentales conocidos en la época a la luz de la hipótesis de Avogadro hubiese llevado a la conclusión de que los elementos químicos gaseosos (o fácilmente vaporizables) conocidos en la época eran moléculas diatómicas (H2 para el hidrógeno, N2 para el nitrógeno, O2 para el oxígeno, Cl2 para el cloro, Br2 para el bromo y I2 para el yodo). La excepción son los gases nobles, pero no se conocían en la época.
Sorprendentemente, esta hipótesis pasó inadvertida para la comunidad química durante casi 50 años. Si se hubiese tenido en cuenta, el trabajo de los químicos de la época hubiese sido más fácil, se hubiese podido establecer correctamente la fórmula de muchos compuestos químicos y se hubiesen podido determinar con precisión los pesos atómicos de los elementos.
¿En qué circunstancia se produjo la aceptación de la hipótesis de Avogadro? Fue consecuencia de la insistencia de un joven químico italiano, Stanislao Cannizzaro (1826-1910), en el congreso de Karlsruke, celebrado en 1860. Esta historia se ha contado en otro post y no la voy a repetir aquí.

A continuación se indican tres artículos sobre la historia del Número de Avogadro y como su valor ha cambiado a lo largo de la historia. Dos de los artículos han sido escritos por William Jensen, excelente historiador de la química.

How and When Did Avogadro’s Name Become Associated with Avogadro’s Number? W. B. Jensen, J. Chem. Educ. 2007, 84, 223. El artículo se puede descargar aquí.

Why Has the Value of Avogadro’s Constant Changed Over Time? W. B. Jensen, J. Chem. Educ. 2010, 87, 1302. El artículo se puede descargar aquí.

Actualmente, hay un artículo en prensa en Analytical Chemistry en el que han determinado con mucha precisión el peso atómico del silicio; lo que permite, a su vez, determinar el Número de Avogadro.

captura-de-pantalla_1

captura-de-pantalla_2

El resumen del artículo (como aparece en la página web) se indica en la siguiente imagen.

captura-de-pantalla_3

En mi libro Los Avances de la Química (Libros de la Catarata-CSIC, 2011) también cuento algunos detalles históricos del desarrollo de la química.

imagen_libro_aqis_br

Nota: Esta entrada es mi segunda participación en la XII Edición del Carnaval de Química, que aloja el blog Historias con mucha química (como todas) que administra  María Docavo, uno de los activos de futuro de la RSEQ.

Bernardo Herradón García
CSIC y RSEQ
b.herradon@csic.es

Balance de un año. Todo es química.

Hoy hace un año que se inauguró el Año Internacional de la Química en España. Este 8 de febrero también coincide (según el calendario Gregoriano) con el 178º aniversario del nacimiento de Dimitri Mendeleev; posiblemente el químico más importante que ha existido. Estas dos conmemoraciones se trataron en este blog.

2011 fue declarado Año Internacional de la Química por Naciones Unidas, que comisionó su gestión a la IUPAC (International Union of Pure and Applied Chemistry) y a la UNESCO.

El año pasado fue muy importante para la química. Se organizaron numerosas actividades en todo el mundo y España no fue una excepción. Personalmente me impliqué en numerosas tareas, que se resumen en las imágenes siguientes (pulsando sobre ellas, se obtienen de mayor tamaño).

Documentación diversa (copias de las charlas, entrevistas, copias del material de las exposiciones, lecciones del curso, programas de radio, artículos de divulgación y difusión en diversos medios, etc.) que recoge las diferentes actividades en las que he participado se pueden descargar en la web, especialmente en la página Los Avances de la Química , cuya portada durante 2011 estuvo dedicada al AIQ. En el menú lateral de esta web también se puede descargar material. Otros colegas en España han realizado actividades muy interesantes. En un próximo post en esta o en otra web (Los Avances de la Química, Educación Química, Grupo de Facebook de la RSEQ, Todo es Química-2012) haré un resumen de otras actividades realizadas; aunque los anuncios y algunos detalles se pueden encontrar aquí.

El principal objetivo del AIQ ha sido intentar que la sociedad cambiase la percepción que tiene sobre la química. Creo que esto se ha logrado, como lo demuestra el tratamiento que la prensa da a la química. Ya no se considera que la química es la “causante de todos los males de la humanidad” y se la empueza a tratar con justicia, dándole el merito de ser una ciencia fundamental en nuestro bienestar y con gran potencialidad futura.

Sin embargo, no podemos relajarnos. Vivimos un momento histórico en el que dependemos de la ciencia y la tecnología; sin embargo, la sociedad, aunque se beneficia de este progreso, no reconoce este papel. Esta situación es global, pero se acentúa en países con poca tradición y cultura científica como el nuestro. Carlos Elías describe muy bien este momento que vive la ciencia en su libro La razón estrangulada, de lectura recomendada. Además, la química, aunque mejor considerada que hace un año, sigue siendo una especie de Cenicienta de la Ciencia. No tenemos el glamour de las ciencias biológicas, ni el prestigio de las matemáticas o la física. Por todas estas razones, los químicos debemos seguir publicitando adecuadamente nuestra ciencia y tenemos que seguir haciendo esfuerzos para transmitir los avances de la química a la sociedad.

¡Celebremos 2012 como un año químico!

¿Hacen falta razones para celebrar que 2012 es también un año químico? Mira a tu alrededor, ¿que ves? química. ¿Que tienen de común el día de hoy, ayer, hace un mes, 5 años o dentro de 10 años? química.

Todos interaccionamos cada día con miles de sustancias químicas, desde el aire que respiramos, el alimento que ingerimos, la ropa que llevamos, la energía que gastamos,…..¡Todo es química!

Esto queda reflejado en la siguiente imagen, donde nuestro planeta está rodeado por numerosos artículos que conocemos y la mayoría usamos para nuestro beneficio. Y es que la química, literalmente, nos rodea. Todos estos materiales están hecho de sustancias químicas.

En definitiva, la química es la ciencia que contribuye a:

1) Disfrutar de una vida más larga.

2) Que la vida sea más saludable.

3) Proporcionarnos agua pura y potable.

4) Conseguir más y mejores alimentos.

5) Cuidar de nuestro ganado.

6) Suministrar energía, con la que nos calentamos, nos movemos en transportes mecánicos o refrigeramos.

7) Que nuestras ropas y sus colores sean más resistentes y atractivos; mejorar nuestro aspecto con perfumes, productos de higiene y de cosmética; contribuir en la limpieza del hogar y de nuestros utensilios; ayudar a mantener frescos nuestros alimentos; prácticamente proporcionarnos todos los artículos que usamos a diario, desde la tinta con la que escribimos o el papel en el que escribimos.

8 ) Permitirnos estar a la última en tecnología: con el ordenador más potente y ligero; con el móvil más ligero; con el sistema más moderno de iluminación; con el medio de transporte adecuado; con el material para batir marcas deportivas; y con muchas aplicaciones más.

En resumen, necesitamos la química en nuestras vidas, Y TODO ES QUÍMICA, TAMBIÉN EN 2012.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Todo es Química, también en 2012.

Hoy hace un año que se inauguró el Año Internacional de la Química en España. Este 8 de febrero también coincide (según el calendario Gregoriano) con el 178º aniversario del nacimiento de Dimitri Mendeleev; posiblemente el químico más importante que ha existido. Estas dos conmemoraciones se trataron en este blog.

2011 fue declarado Año Internacional de la Química por Naciones Unidas, que comisionó su gestión a la IUPAC (International Union of Pure and Applied Chemistry) y a la UNESCO.

El año pasado fue muy importante para la química. Se organizaron numerosas actividades en todo el mundo y España no fue una excepción. Personalmente me impliqué en numerosas tareas, que se resumen en las imágenes siguientes (pulsando sobre ellas, se obtienen de mayor tamaño).

 

 

Documentación diversa (copias de las charlas, entrevistas, copias del material de las exposiciones, lecciones del curso, programas de radio, artículos de divulgación y difusión en diversos medios, etc.) que recoge las diferentes actividades en las que he participado se pueden descargar en la web, especialmente en la página Los Avances de la Química , cuya portada durante 2011 estuvo dedicada al AIQ. En el menú lateral de esta web también se puede descargar material. Otros colegas en España han realizado actividades muy interesantes. En un próximo post en esta o en otra web (Los Avances de la Química, Educación Química, Grupo de Facebook de la RSEQ, Todo es Química-2012) haré un resumen de otras actividades realizadas; aunque los anuncios y algunos detalles se pueden encontrar aquí.

El principal objetivo del AIQ ha sido intentar que la sociedad cambiase la percepción que tiene sobre la química. Creo que esto se ha logrado, como lo demuestra el tratamiento que la prensa da a la química. Ya no se considera que la química es la “causante de todos los males de la humanidad” y se la empueza a tratar con justicia, dándole el merito de ser una ciencia fundamental en nuestro bienestar y con gran potencialidad futura.

Sin embargo, no podemos relajarnos. Vivimos un momento histórico en el que dependemos de la ciencia y la tecnología; sin embargo, la sociedad, aunque se beneficia de este progreso, no reconoce este papel. Esta situación es global, pero se acentúa en países con poca tradición y cultura científica como el nuestro. Carlos Elías describe muy bien este momento que vive la ciencia en su libro La razón estrangulada, de lectura recomendada. Además, la química, aunque mejor considerada que hace un año, sigue siendo una especie de Cenicienta de la Ciencia. No tenemos el glamour de las ciencias biológicas, ni el prestigio de las matemáticas o la física. Por todas estas razones, los químicos debemos seguir publicitando adecuadamente nuestra ciencia y tenemos que seguir haciendo esfuerzos para transmitir los avances de la química a la sociedad.

¡Celebremos 2012 como un año químico!

¿Hacen falta razones para celebrar que 2012 es también un año químico? Mira a tu alrededor, ¿que ves? química. ¿Que tienen de común el día de hoy, ayer, hace un mes, 5 años o dentro de 10 años? química.

Todos interaccionamos cada día con miles de sustancias químicas, desde el aire que respiramos, el alimento que ingerimos, la ropa que llevamos, la energía que gastamos,…..¡Todo es química!

Esto queda reflejado en la siguiente imagen, donde nuestro planeta está rodeado por numerosos artículos que conocemos y la mayoría usamos para nuestro beneficio. Y es que la química, literalmente, nos rodea. Todos estos materiales están hecho de sustancias químicas.

En definitiva, la química es la ciencia que contribuye a:

1) Disfrutar de una vida más larga.

2) Que la vida sea más saludable.

3) Proporcionarnos agua pura y potable.

4) Conseguir más y mejores alimentos.

5) Cuidar de nuestro ganado.

6) Suministrar energía, con la que nos calentamos, nos movemos en transportes mecánicos o refrigeramos.

7) Que nuestras ropas y sus colores sean más resistentes y atractivos; mejorar nuestro aspecto con perfumes, productos de higiene y de cosmética; contribuir en la limpieza del hogar y de nuestros utensilios; ayudar a mantener frescos nuestros alimentos; prácticamente proporcionarnos todos los artículos que usamos a diario, desde la tinta con la que escribimos o el papel en el que escribimos.

8 ) Permitirnos estar a la última en tecnología: con el ordenador más potente y ligero; con el móvil más ligero; con el sistema más moderno de iluminación; con el medio de transporte adecuado; con el material para batir marcas deportivas; y con muchas aplicaciones más.

 

En resumen, necesitamos la química en nuestras vidas, Y TODO ES QUÍMICA, TAMBIÉN EN 2012.

 

Nota: Esta entrada participa en la XII Edición del Carnaval de Química, que aloja el joven (y muy buen) blog Historias con mucha química (como todas) que administra la joven, entusiata y buena amiga, María Docavo.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Premios de la RSEQ: Productos Naturales.

El próximo día 3 de febrero, a las 12. 00 horas, en el Instituto de Ciencias Agrarias del CSIC, Madrid, C/ Serrano 115 dpdo., se celebrará el acto de entrega de los premios de investigación del  Grupo Especializado de Productos Naturales de la RSEQ, GEPRONAT 2011. Más información. Se rendirá homenaje a los profesores Antonio González y Joaquín  de Pascual-Teresa, dos de los pioneros de la investigación española en Productos Naturales.

Los detalles se indican en las siguientes imagenes.

Bernardo Herradón García
CSIC
b.herradon@csic.es