Archivos de la categoría: Enseñanza

El mol

El 4 de octubre de 1971 se estableció el mol como la unidad de materia en el Sistema Internacional de Unidades Científicas.

El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos de carbono hay en 0’012 kg de carbono-12. La naturaleza de las partículas elementales debe especificarse y pueden ser átomos, moléculas, iones, electrones u otras partículas. La cantidad de partículas contenidas en los 12 gamos de carbono-12 es, por definición, el Número de Avogadro.

avogadro_200-anos

Este número se bautizó de esta manera en homenaje a Avogadro, que en 1811 formuló su hipótesis (ver imagen), la cual permitió racionalizar muchos resultados conocidos de química en su época, pero que pasó prácticamente inadvertida durante casi 50 años. La hipótesis de Avogadro no fue aceptada hasta el congreso de Karlruhe (organizado por Kekulè y otros, celebrado en septiembre de 1860), gracias al trabajo de difusión realizado por Cannizzaro. Un artículo sobre el congreso de Karlsruhe se puede descargar aquí.

karlsruhe_avogadro_cannizzaro

En un artículo anterior ya conté algunas cosas sobre el Número de Avogadro y su historia.

A continuación se expone un artículo recientemente publicado en Anales de Química (2012, 108, 177) sobre la determinación experimental del Número de Avogadro, que es importante para redefinir la unidad de masa en el Sistema Internacional de Unidades.

El Número de Avogadro (NA) es uno de los iconos de la química. Con su definición, significado y valor, NA relaciona las escalas atómico-molecular y macroscópicas de la materia. NA se define como el número de átomos presentes en 12 gramos del isótopo 12 del carbono (12C), lo que se traduce en el número de partículas (átomos, iones, moléculas, electrones, etc.) en un mol de partículas. Su valor, aproximadamente 6,022 x 10^23 partículas por mol (mol^-1) da idea del pequeño tamaño de átomos y moléculas.
Los intentos iniciales de determinar el valor de NA se remontan a mediados del siglo XIX (Loschmidt, 1865), culminando en los experimentos de Perrin (1908) basados en propuestas teóricas de Einstein (1905). Desde la determinación del valor de NA por Perrin, se han realizado medidas más precisas de su valor (ver W. B. Jensen, J. Chem. Ed. 2010, 87, 1302), cuya inexactitud se ha cifrado en 4,4 partes por 100 millones (108).
Sin embargo, en la actualidad hace falta determinar el valor de NA con una precisión mayor de 2 partes en 100 millones ¿Por qué tanta precisión?
El objetivo es redefinir la unidad de masa en el Sistema Internacional de Unidades, dejando a un lado la definición basada en la masa de un cilindro de platino-iridio, y redifiniendo en términos de constantes de la naturaleza, siendo la de Plank (h) la más adecuada para esta redefinición. La constante de Planck se puede determinar indirectamente a partir de medidas de la constante de Rydberg (R∞), la magnitud física medida con más precisión, y del Número de Avogadro (NA). En los últimos años se han descrito diversos métodos para determinar NA con precisión, que se basan en la determinación de la densidad de un monocristal por difracción de rayos X, como propuesto por W. H. Bragg y W. L. Bragg en 1913. Para conseguir estas medidas precisas, se ha usado un monocristal esférico perfecto de un kilogramo de silicio enriquecido en el isótopo 28 (99, 995% del isótopo 28 del silicio). Para obtener un resultado experimental satisfactorio, es necesaria la determinación precisa del peso atómico relativo del silicio.
En una reciente publicación en Analytical Chemistry (2012, 84, 2321-2327), Mester y colaboradores han determinado el peso atómico de 28Si usando espectrometría de masas ciclotrónica. El peso atómico determinado para el Silicio-28 es 27,97696839(24), lo que da un valor de 6,02214040(19) x 10^23 mol^-1 para NA.

avogadro_perrin

Para un artículo reciente describiendo la historia y las nuevas unidades del Sistema Internacional de Unidades, ver Anales de Química 2012, 108, 236. El título del artículo es Sistema Internacional de Unidades: resumen histórico y últimas propuestas, escrito por Gabriel Pinto, Manuela Martín-Sánchez y María Teresa Martín-Sánchez

Bernardo Herradón García
CSIC
b.herradon@csic.es

Libros de cuestiones y problemas de química

Sergio Menargues (Universidad de Alicante) y Fernando Latre (Universidad Jaime I) son dos profesores con amplia experiencia en la enseñanza en educación secundaria, cuyos estudiantes han participado con éxito en numerosas Olimpiadas Nacionales de Química.

Fruto de esa dedicada labor educativa, Sergio y Fernando han editado 10 libros de resolución de problemas. El título de los libros es “Problemas y Cuestiones de las Olimpiadas de Química“.

problemas_olimpiada_quimica_editado

Aunque la motivación original es que estos libros sirvan para la preparación de estudiantes para las Olimpiadas de Química, hay que destacar que el material sirve perfectamente para completar los cursos de química en bachillerato e incluso para un curso universitario de Química General. Las cuestiones y los problemas están explicados con gran detalle y se han agrupado por temas en 10 volúmenes.

Los autores han dado permiso para colgarlos en esta web y se pueden descargar en los enlaces que se indican a continuación (y permanentemente alojados en esta web, pudiéndose decargar del menú lateral en la sección “Libros de problemas de química“).

Volumen 1. Cuestiones de estequiometría.

Volumen 2. Cuestiones de termoquímica, cinética y equilibrio.

Volumen 3. Cuestiones de ácido-base, precipitación y electroquímica.

Volumen 4. Cuestiones de estructura atómica, sistema periódico y geometría molecular.

Volumen 5. Cuestiones de enlace y propiedades, química orgánica, química nuclear y laboratorio.

Volumen 6. Problemas de Olimpiadas Nacionales 1996-2011.

Volumen 7. Problemas de estequiometría.

Volumen 8. Problemas de termoquímica, cinética y equilibrio químico.

Volumen 9. Problemas de ácido-base, precipitación y electroquímica.

Volumen 10. Problemas de estructura atómica, sistema periódico, enlace químico, química orgánica y química nuclear.

Otros libros de los Fernando Latre y Sergio Menargues:

  • Química (V. Blasco, F. Latre y J. Usó; 2001, ISBN: 8487683215).
  • Problemas y cuestiones de las olimpiadas de química de la Comunidad Valenciana (S. Menargues, A. Gómez y F. Latre; 2009, ISBN: 8479089989).
  • 20 Años de problemas y cuestiones de química en las pruebas de acceso a la Universidad de Alicante (S. Menargues; 2007, ISBN: 847908944x).

Bernardo Herradón García
CSIC
b.herradon@csic.es


Los Avances de la Química en la Universidad de Granada

La Universidad de Granada ha organizado cuatro seminarios y una conferencia para conmemorar el Año Internacional de la Química. Aunque los seminarios se enmarcan dentro del Máster en Química, tanto éstos como la conferencia están abiertos a la assitencia de otras personas.

Los títulos y un breve resumen de las charlas se indican a continuación. Las cuatro primeras forman parte del Máster en Química y la quinta es una conferencia de la Facultad de Química.

Los avances de la química y su impacto en la sociedad: una visión general. Esta primera charla introductoria va a exponer ejemplos diversos en los que la química juega un papel en nuestro bienestar: mejora y cuidado de nuestra salud, producción y almacenamiento de energía, impacto medioambiental de las sustancias químicas y cómo la química está logrando avances en la protección ambiental, transporte, productos de consumo, deportes, etc. Los ejemplos servirán para repasar algunos conceptos fundamentales de la química. Esta charla será el lunes 12 de diciembre a las 12:00.

¿Lo común de cada día? ¡La química! En esta charla se destacará el papel que la química tiene en un día cualquiera en nuestras vidas. Todos interaccionamos con miles de sustancias químicas a diario (aunque no nos demos cuenta). La mayoría de las sustancia químicas son beneficiosa para nuestro bienestar; aunque hay casos en los que pueden ser perjudiciales; lo que depende del uso que demos  aestas sustancias químicas. Esta charla será el martes 13 de diciembre a las 13:00.

¿Natural? ¿Sintético? ¡Todo es química! Esta charla desmontará los tópicos “natural = bueno” y “sintético/artificial = malo”. Se expondrán ejemplos de sustancias beneficiosas y perjudiciales, independientemente de su origen. Se destacará el papel que los productos naturales han tenido en el desarrollo de la química, especialmente de la química orgánica. También se expondrán ejemplos del uso de polímeros, materiales sintéticos que han facilitado nuestra vida desde hace décadas. La charla será el miércoles 14 de diciembre a las 11:00.

El futuro: una visión de la química. Se presentarán ejmeplos de investigaciones actuales en química que van a servir para el bienestar de la humanidad en las próximas décadas; abordando retos en salud, alimentación, energía, medio ambiente, tecnología y aspectos socilaes. Esta charla será el jueves 15 de diciembre a las 13:00.

2011: Un año de conmemoraciones químicas. Desde la antigüedad hasta nuestros días. 2011 ha sido declarado Año Internacional de la Química por la ONU. El motivo ha sido la conmemoración del centenario de la concesión del Premio Nobel de Química a Marie Curie. También durante este año se ha querido destacar el papel de las mujeres en la ciencia. En esta charla se va presentar una visión histórica del desarrollo de la química, con algunos hitos de los que en este año 2011 se cumplen fechas “redondas”. También se pondrán algunos ejemplos de investigadoras relevantes en química y conmemoraciones químicas de 2012 que deben servir de “excusa” para seguir difundiendo los avances de la química en la sociedad. La conferencia será el viernes 16 de diciembre a las 12:30.

A continuación se adjunta el cartel anunciando el ciclo de seminarios y conferencias.

Bernardo Herradón García
CSIC
b.herradon@csic.es

El hidrógeno

El hidrógeno (símbolo: H) es el átomo más sencillo que existe. Sólo un protón en su núcleo y un electrón alrededor de él. El hidrógeno ha sido muy importante en el desarrollo de los fundamentos de la Química: la explicación de las estructuras atómicas y molecular.

El protón es una partícula subatómica con carga positiva y el electrón es una partícula subatómica con carga negativa. La tercera partícula subatómica importante es el neutrón que también está en el núcleo atómico y que es neutra eléctricamente. El protón y el neutrón tiene aproximadamente la misma masa. El electrón es mucho más ligero (aproximadamente 1836 veces en reposo).

La principal característica de un elemento químico es el número de protones del núcleo, que se define como el número atómico. Puesto que la masa del protón y del neutrónes aproximadamente iguales, la suna del número de protones y neutrones es, redondeando a números enteros, la masa atómica (también frecuentemente denominado peso atómico). La masa de los electrones se desprecia a la hora de calcular la masa de los átomos.

Los elementos químicos pueden tener más de un tipo de átomos, que se conocen como isótopos. Los isótopos son los átomos de un elemento químico que, teniendo el mismo número de protones (que define el número atómico), poseen diferente número de neutrones; por lo tanto, masas distintas.

El hidrógeno es el componente más abundante del universo, constituyendo aproximadamente el 75% de la masa conocida y más del 90% de los átomos del universo. La razón de su abundancia es que fue el elemento químico que se formó primero en el origen del universo. Todos los elementos químicos naturales (hasta el número 92 en la tabla Periódica) se formaron como consecuencia de la nucleosíntesis tras el big-bang, primero el hidrógeno, luego el helio y, así sucesivamente, los elementos más pesados según su número atómico.

Las estrellas están principalmente constituida por hidrógeno en forma de plasma (un estado de la materia distinta  a las habituales que conocemos: gas, líquido o sólido). En un plasma hay separación de iones. En las estrellas, los núcleos de hidrógeno (cargados positivamente) están agrupados y los electrones (cargados negativamente) están separados de los núcleos. Este estado de la materia tiene una altísima conductividad eléctrica.

El hidrógeno (elemento de número atómico = 1, ocupando el primer lugar en la Tabla Periódica) tiene tres isótopos; que difieren en el número de neutrones del núcleo, pudiendo ser cero, uno o dos. El que tiene un solo protón se denomina hidrógeno (o protio, un término poco usado) y es el isótopo más abundante. Se denota por 1H (el superíndice indica el peso del isótopo = número de protones + número de neutrones). El otro isótopo del hidrógeno es el deuterio, que tiene un protón y un neutrón en el núcleo, simbolizándose por 2H. La proporción de isótopos del hidrógeno en nuestro planeta es de entre 12500 y 1800 átomos de protio por cada átomo de deuterio (dependiendo del compuesto químico y de su origen). Existe un tercer isótopo del hidrógeno (el tritio, 3H) que tiene dos neutrones en el núcleo. Es mucho menos abundante que el deuterio. Se forma por la interacción de rayos cósmicos con la atmósfera terrestre. También se genera intencionadamente en reactores nucleares, pues tiene aplicaciones en investigaciones químicas, físicas y biológicas.

Un átomo, para mantener su neutralidad eléctrica, tiene que tener el mismo número de electrones que de protones. Si uno de ellos está en exceso, se forman los iones, que pueden ser negativos o positivos, dependiendo de que haya más electrones que protones (iones negativos o aniones) o menos electrones que protones (iones positivos o cationes).

Excepto en el caso de los gases nobles más ligeros, que se encuentran en estado monoatómico; el estado normal de todas las sustancias químicas es formar moléculas: los átomos quieren combinarse entre sí, compartiendo electrones que forman los enlaces químicos. Aunque el hidrógeno se puede generar en estado atómico, esto se consigue en condiciones muy especiales. La forma en la que el elemento químico hidrógeno se encuentra en la naturaleza es en forma de una molécula con dos átomos de hidrógeno, generando la molécula de dihidrógeno (H2, dónde el subíndice indica cuantos átomos están combinados en esa estructura), frecuentemente denominada sólo “hidrógeno” o “hidrógeno molecular”. El dihidrógeno es un gas con un punto de ebullición de 20 K y con punto de fusión de 14 K a presión atmosférica.

El hidrógeno fue generado en el siglo XVII por Robert Boyle al tratar ciertos metales, como zinc o hierro, con ácidos fuertes; y fue aislado por Cavendish en 1766. El dihidrógeno se produce industrialmente por reacción de metano con agua generando una mezcla de monóxido de carbono (CO) y H2, que se denomina gas de síntesis (que también se puede obtener a partir de carbón). También se puede generar por electrolisis de la molécula de agua.

La principal aplicación industrial del hidrógeno es la producción del amoniaco; el compuesto químico más importante en la fabricación de abonos y fertilizantes, que mejoran nuestras cosechas proporcionando alimentos.

El dihidrógeno es un gas muy inflamable. Esta propiedad es debida a que la reacción con oxígeno genera mucho calor. Esta reacción, aunque potencialmente peligrosa, se puede usar de manera controlada para producir energía. La energía generada por la combustión del hidrógeno es limpia y eficaz. Si se resuelven problemas científico-técnicos, como la producción eficiente de H2 y su almacenamiento y transporte seguros; podremos beneficiarnos de la energía química del H2, llegando a alcanzar la denominada economía basada en el hidrógeno.

Bernardo Herradón-G.

CSIC

herradon@iqog.csic.es

Curso de verano sobre la enseñanza de la química

La química, ciencia del siglo XXI. Una perspectiva química para descubrir nuestro entorno y nuestra esencia.

Curso de verano organizado por la Universidad del País Vasco en colaboración con la con la colaboración del Ayuntamiento de Donostia-San Sebastián, la Diputación Foral de Gipuzkoa, el Departamento de Educación, Universidades e Investigación del Gobierno Vasco y la Fundación BBVA. Se celebrará en las instalaciónes del Miramón Kutxaespacio de la Ciencia (Paseo Mikeletegi 43-45, San Sebastián) del 29 de junio al 1 de julio.

donostia_cabecera_curso1

El curso está dirigido especialemente a profesores (y futuros profesores) de química, con el objetivoi de aportarles nuevas experiencias, herramientas prácticas y estrategias más adecuadas y basadas en la práctica docente.

Otros objetivos generales del curso son:

1) Enfatizar que la Química es una ciencia tan experimental como social y que está presente en prácticamente todos los campos de nuestra vida. Destacando el papel fundamental que juega esta disciplina en el desarrollo científico y tecnológico, junto con la Física, la Matemática y la Biología, para comprender los adelantos del siglo que vivimos.

2)  Mostrar que la enseñanza de la química es fundamental para abordar problemas como el cambio climático mundial, ofrecer fuentes sostenibles de agua limpia, alimentos y energía y mantener un medio ambiente sano para el bienestar de todas las personas, alejándose de la idea de “química sintética” como algo antinatural.

3)  Reflexionar sobre la relación y el desarrollo que algunas competencias educativas generales como aprender a vivir responsablemente, aprender a aprender y a pensar, y otras básicas, como la competencia en cultura científica, tecnológica y de la salud, tienen con la Química, el Medioambiente y la Biodiversidad y con la formación integral de las personas.

El programa del curso y más información se puede descargar aquí.

http://udaikastaroak.i2basque.es/portal/images/CursosPDF/g1.pdf

Bernardo Herradón-G

CSIC

herradon@iqog.csic.es

La química y el medio ambiente

La copia en PDF de la presentación  de la charla en el IES-Ramiro de Maeztu del día 19 de enero de 2010 se puede descargar en  “La Química y el Medio Ambiente: Aspectos tóxicos de los compuestos químicos”

En esta presentación se abordan distintos aspectos tóxicos y medioambientales de los compuestos químicos, resaltando el papel que esta situación tiene sobre la “imagen social de la química”.

Puesto que todo es química, también la contaminación ambiental tiene carácter químico. En una próxima charla se abordará el papel que la química tiene para ayudar a resolver este problema.

Algunos  aspectos tratados en esta charla son:

1) Química y medio ambiente.

2) Mala imagen social de la química.

3) Toxicidad selectiva. Importancia de la concentración, un concepto frecuentemente olvidado en las noticias sobre química.

4) Relación de las ciencias y el medio ambiente.

5) Contaminantes ambientales.

6) Cambio climático.

7) Efecto invernadero. Gases de efecto invernadero.

8 ) El ozono. Química atmosférica.

9) El problema del CO2. Posibles soluciones.

10) ¿Qué podemos hacer? Actuaciones a diversos niveles: individuales, colectivos, institucionales, globales.

11) Protocolo de Kyoto, cumbre de Copenhaguen, convenio de Estocolmo, REACH.

12) Los compuestos orgánicos persistentes (COPs, POPs) y los aspirantes. EStructuras químicas. Efectos biológicos.

13)  El agua.

14) Lo que la química puede hacer por resolver el problema (introducción  a la siguiente charla).

Bernardo Herradón

IQOG-CSIC

herradon@iqog.csic.es