Archivos de la categoría: Efemérides

Faraday y la Royal Institution

El 1 de marzo de 1813 Michael Faraday (1791-1867) empezó a trabajar en la Royal Institution; en la que permaneció hasta su fallecimiento y en las que realizó algunos de los descubrimientos científicos más importantes de la historia de la ciencia, entre ellos la inducción electromagnética, las leyes de la electroquímica, el descubrimiento del benceno, la liquefacción del cloro, la generación de oro coloidal, entre otros.

Faraday_Joven_Sello

Aparte de esta inmensa labor investigadora, Faraday también realizó una importante actividad divulgadora, siendo muy celebradas sus conferencias populares (en la imagen, durante una de ellas).

En 1813 fue contratado como responsable de la instrumentación, llegando a ser, con el paso de los años, el Director de la Royal Institution y uno de los científicos más respetados del mundo.

Volta_Davy_Faraday_RI_Vertical

Poco después de su entrada en la Royal Institution, Faraday empezó a colaborar con Humphry Davy (1778-1829), del que fue asistente. Davy consideró a “Michael Faraday como su mayor descubrimiento”. Algunos artículos sobre Davy y Faraday se pueden leer en los siguientes enlaces:

1) Recordando a uno de los grandes: Humphry Davy
2) Faraday: Infancia y juventud

Bernardo Herradón

Director del curso Los Avances de la Química y su Impacto en la Sociedad

Humphry Davy

El 29 de mayo se conmemora el 187º aniversario del fallecimiento de Humphry Davy.

Davy (1778-1829) consiguió aislar metales muy reactivos, como el sodio, el potasio, el estroncio, el bario y el magnesio; así como el boro (simultáneamente a Gay-Lussac). Identificó el cloro y el yodo como elementos químicos, que habían sido descubierto con anterioridad, pero no reconocidos como tales. El cloro había sido aislado por Scheele pero pensaba que era un compuesto químico que contenía oxígeno.

Continuar leyendo

Conmemoración científica del 14 de abril: Huygens

El 14 de abril de 1629 nacía Christiaan Huygens (1629-1695). Fue un auténtico gigante de la ciencia del siglo XVII. Realizó importantes aportaciones en astronomía, mecánica óptica, matemáticas, teoría de la probabilidad y en la construcción de relojes.

HuygensFuente: Wikipedia

Estudió Matemáticas y Derecho en la universidad de Leiden. Realizó largas estancias en París (especialmente entre 1666 y 1681), donde conoció a Pascal y Leibnitz y colaboró en la fundación de la Academia Francesa de Ciencias. En 1681 volvió a Holanda donde permaneció el resto de su vida, excepto una breve estancia en Londres (1689) donde conoció a Newton.

En astronomía construyó lentes y telescopios que le permitieron descubrir el primer satélite de Saturno (Titán, en 1655), las estrellas de la nebulosa de Orión (1656) y los anillos de Saturno (1659); así como el estudio de la superficie de Marte.

Su investigación en mecánica le llevó a estudiar el choque elástico, la fuerza centrífuga y el movimiento del péndulo. Esta última investigación le permitió la construcción de relojes mecánicos, inventando el reloj de péndulo. La disponibilidad de estos instrumentos era un gran problema científico-tecnológico de la época, pues era necesario, aparte de para medir el tiempo, para ayudar en la navegación marítima.

Investigó en óptica, motivado por su interés en los telescopios. Propuso la teoría ondulatoria de la luz (en oposición a la corpuscular de Newton) que fue presentada en la Academia de Ciencias de Paris en 1678. La teoría de Huygens era capaz de explicar propiedades geométricas de la luz, como la reflexión y la refracción; siendo uno de los pioneros en óptica geométrica.

En matemáticas, sus principales aportaciones son en teoría de la probabilidad (con una amplia correspondencia con Pascal y Fermat, los fundadores de esta área de las matemáticas), en el que introduce el concepto de esperanza matemática; y en el estudio de curvas de interés en física, como la cicloide y la parábola y desarrolla el concepto de envolvente de familias de curvas.

Bernardo Herradón

Efeméride cientifica del día: Nacimiento de Geoffroy

El 13 de febrero de 1672 nacía Étienne-François Geoffroy (1672-1731), que realizó el primer intento de explicación de la reactividad química.

Fue un médico, boticario y químico francés, siendo un activo miembro de la Academia Real de Ciencias de París, en la que presentó los resultados de muchas de sus investigaciones. A través de sus viajes por Inglaterra, Italia y Holanda, adquirió un profundo conocimiento científico. Seguidor del universo mecanicista de Descartes, fue uno de los científicos franceses de la época más interesados en las ideas de Newton.

Continuar leyendo

Efeméride científica: el comienzo de la Biología Molecular

El 1 de febrero de 1944 se publicaba el artículo “Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types: Induction of Transformation by a Desoxyribonucleic Acid Fraction Isolated from Pneumococcus Type III” en la revista J. Experimental Medicine, cuyos autores son Oswald Avery (1877-1955), Colin MacLeod (1909-1972) y Maclyn McCarty (1911-2005).

Continuar leyendo

Recordando a Marie Curie (1867-1934)

Hoy se cumplen 146 años del nacimiento de Marie Curie. Nacida Manya Sklodowska, en Polonia. Premio Nobel de Física en 1903 y de Química en 1911. La primera mujer en conseguir el Premio Nobel y la primera persona en conseguir dos Premios Nobel. Descubrió la radiactividad del torio, acuño el término “radiactividad”, aisló y caracterizó los elementos químicos radio y polonio. Marie Curie vivió una vida intensa. Aparte de su magnífico, admirable y ejemplar labor investigadora, fue una persona comprometida con los derechos humanos, la paz y la libertad. Estas virtudes las transmitió a sus hijas Irene (Premio Nobel de Química en 1935, compartido con su marido Frédéric Joliot-Curie) y Eva (su albacea testamentario y biógrafa).

Hay que recordar que en 2011 se celebró en todo el mundo el Año Internacional de la Química. El motivo de tal conmemoración fue celebración del centenario del Premio Nobel de Química en 1911,  su segundo Premio Nobel. Fue la primera persona en recibir dos Premios Nobel y la primera mujer en conseguir el galardón.

Algunos hitos en la biografía de Marie Curie se indican a continuación:

  • 7 de noviembre de 1867. Nacimiento en Varsovia (Polonia, entonces del Imperio Ruso). Sklodowska es el apellido familiar.
  • Hija de un maestro de física y de una maestra y pianista. La menor de 5 hermanos.
  • Viaja a París para estudiar en la Universidad de la Sorbona (octubre de 1891).
  • Estudia y trabaja (clases particulares) en París.
  • Licenciatura en Física (1893), primer estudiante de la promoción (independientemente del género).
  • Investigación con Lippmann (Premio Nobel de Física, 1908) en 1893. Investiga en magnetismo.
  • Licenciatura en Matemáticas (1894), segundo estudiante de la promoción.
  • Conoce a Pierre Curie (1894), profesor de la Escuela Superior de Física y Química Industriales e investigador destacado en magnetismo.

  • Pierre Curie dirige su Tesis Doctoral en un tema nuevo, los ‘rayos del uranio’ descubiertos por Becquerel en 1896.
  • Material de estudio: minerales de uranio (pechblenda y chalconita), usando una combinación de métodos químicos y físicos.
  • 12 de abril de 1898, Lippmann presenta los primeros resultados de Pierre y Marie en la Academia de Ciencias.
  • Acuña el término radiactividad (radioactividad).
  • Marie y Pierre Curie descubren que el torio (elemento número 90, que había sido descubierto por Berzelius en 1815 ) también es radiactivo.
  • Encuentran que la radiactividad de los minerales de uranio dependía de la calidad de la muestra y era mayor que las sales de uranio pura.
  • Julio de 1898. Publican el descubrimiento del polonio (elemento químico número 84).
  • 26 de diciembre de 1898, anuncian el descubrimiento del radio (elemento número 88).

  • 1903. Premio Nobel de Física. Sólo se propuso a Becquerel y Pierre Curie, éste no lo aceptaría sino se incluyese a Marie. Se concede por la investigación del fenómeno de la radiactividad.
  • 1903. Reciben la Medalla Davy de la Royal Chemical Society.
  • 1904. Pierre y Marie reciben la Medalla Matteuci.
  • 1904. Pierre es nombrado profesor en La Sorbona.
  • 19 de abril de 1906. Fallecimiento de Pierre Curie. Una noticia que impactó a la sociedad de la época.

Curie_Pierre_Fallecimiento

  • 13 de mayo de 1906. La universidad de la Sorbona le ofrece la cátedra de Pierre, que acepta.
  • 1906. Obtención de radio puro. No se patenta el procedimiento de aislamiento.
  • 1911. Se rechaza su ingreso en la Academia de Ciencias.
  • Participación en los 7 primeros Congresos Solvay (1911, 1913, 1921, 1924, 1927, 1930, y 1933).
  • 1911. Premio Nobel de Química. Por el aislamiento y caracterización del polonio y el radio.
  • 1914. Se crea el Instituto del Radio (actualmente Instituto Curie) para investigar en medicina, física, biología y química.
  • Participa activamente en la Primera Guerra Mundial organizando servicios hospitalarios y de radiología (uso de rayos X y de radiactividad). Donación de las medallas de los Premios Nobel para contribuir a la economía nacional durante la guerra. Crea el servicio de ambulancias radiológicas conocidas como las Petit Curie, en las que colabora su hija Irene.

Curie_-_Mobile_X-Ray_Le_Petite_Curies

  • Visitas a España: 1919 (Congreso Nacional de Medicina), 1931 (abril, Residencia de Estudiantes, invitada de la II República a la que había defendido en foros internacionales) y 1933 (Comisión Internacional de Cooperación Intelectual). La siguiente imagen es de su visita a la Residencia de Estudiantes y ha sido usada para editar un sello de correos conmmeorando el Año Internacional de la Química. A continuación se muestra un reportaje gráfico del diario La Vanguardia del 25 de abril de 1931.

Curie_Visita España_250431

  • En los años 1920s inicia una intensa actividad internacional auspiciada por la Liga de Naciones.
  • 1921. Viaje a Estados Unidos. Recauda fondos para el Instituto del Radio. El 20 de mayo visita la Casa Blanca y recibe la donación equivalente a un gramo de radio.
  • 4 de julio de 1934. Fallecimiento en Sallanches (Francia). De leucemia/anemia perniciosa.
  • Curio (Ci): Antigua unidad de radiactividad.
  • Curio: elemento atómico número 96.
  • 1995: Entierro en el Panteón de los Hombres Ilustres de Francia. Primera mujer en el Panteón por sus propios méritos (sólo hay dos, la otra es la esposa de Marcellin Berthelot, enterrada junto a su esposo).

Los parientes  de Marie Curie (su esposo, hijas y yernos), una familia repleta de laureados con el Premio Nobel, se indican en la siguiente imagen.

Algunas frases que demuestran su personalidad y el aprecio que le tenían muchos colegas.

Conclusiones científicas de la investigación de Marie Curie:

v Entender la radiactividad como una propiedad natural que depende de la constitución íntima de la materia (el núcleo).

v Aislar el radio, tras manipular toneladas de mineral de uranio, es uno de los grandes hitos de la química (por el método de trabajo y el tipo de material).

v Abrió el camino para identificar y aislar más elementos radiactivos, tanto naturales como artificiales.

v La química pasó de ser una ciencia de la pesada a una ciencia de medidas indirectas.

v La radiactividad es una radiación ionizante, se detecta con un electrómetro (inventado por Pierre Curie) que mide la conductividad eléctrica en un medio.

Marie Curie es uno de los científicos (independientemente del sexo) más conocidos por el público en general, de la que se han escrito numerosas biografías (se recomienda la escrita por su hija Eva); algunas se muestran a continuación.

Curie_Biografia_1Curie_Biografia_3Curie_Biografia_2Curie_Biografia_4Curie_Biografia_5Curie_Biografia_Eva

También ha sido homenajeada en sellos (ver el anterior) y billetes de banco; algunos (de Polonia y de Francia) se muestran en las siguientes imágenes.

curie_Billete_Polonia_BR

curies_Billete Francia_BR

Google le dedicó un doodle el 7 de noviembre de 2011.

curie11_Google_Doodle

Y tiene uno de los mayores méritos que puede alcanzar un científico: un elemento con su nombre, el curio (Z = 96).

Curio_Tabla Periodica

En definitiva, una gran científica y persona.

Nota: Este post participa en la edición cobre del Carnaval de Química (Z = 29), que organiza Héctor Busto (@hebusto) en su magnífico blog Más ciencia, por favor.

Bernardo Herradón
CSIC

Píldoras químicas: recordando a Victor Meyer

El 8 de septiembre de 1848 nació Victor (o Viktor) Meyer (1848-1897), Uno de los químicos orgánicos más influyentes del siglo XIX. Descubrió el tiofeno e investigó la reactividad de compuestos aromáticos, siendo uno de los máximos defensores de la estructura del beneceno propuesta por Kekulé (en la imagen. la manera propuesta por  Kekulé para los derivados del benceno)

Fabricó un aparato para determinar la densidad de un vapor, lo que facilitó la determinación de pesos atómicos y moleculares (en la imagen, un esquema del aparato).

Colaboró con algunos de los químicos más destacados del siglo XIX, como Bunsen y von Baeyer. Fue profesor en la ETH (Zürich), Universidad de Göttingen (ocupando la cátedra que había ocupado Wöhler) y Universidad de Heidelberg (sustituyendo a Bunsen).

Nota: Esta entrada participa en el XXVII Carnaval de Química, que se organiza en el blog Educación Química.

Bernardo Herradón
CSIC

Conmemoraciones químicas del 7 de septiembre: Kekulé y Cornforth.

Friedrich August Kekulé (1829-1896) nació el 7 de septiembre de 1829. Uno de los químicos orgánicos más influyentes de la segunda mitad del siglo XIX. Fue uno de los organizadores del congreso de Karlsruhe. Su papel fue fundamental en establecer los cimientos de la teoría estructural de la química orgánica, proponiendo la tetravalencia del carbono (simultáneamente a Couper) y la estructura del benceno (que se le ocurrió durante un sueño; uno de los más famosos de la historia de la ciencia).

kekule_Sueño_Caricatura

Hemos hablado de Kekulé en el 2º programa de EL NANOSCOPIO; el podcast se puede descargar aquí.

Kekulé es uno de los científicos destacados en la charla Los avances de la química a lo largo de la historia, que se impartió en el curso de divulgación Los avances de la química y su impacto en la sociedad.

Diapositiva003

John W.  Conforth nació el 7 de septiembre de 1917. Hoy cumple 96 años. Recibió el Premio Nobel en 1975 (Química) por sus investigaciones en el mecanismo de las reacciones enzimáticas, especialemnte la estereoquímica (la disposición espacial de los átomos dentro de una molécula). La conferencia de aceptación del Premio Nobel se puede descargar aquí,Su investigación permitió determinar con detalle las reacciones de la biosíntesis de terpenos y esteroides, especialmente el colesterol. Por estas investigaciones, Cornforth debe ser considerado uno de los pioneros de la química bioorgánica.

Nacido en Australia, a los 22 años se traslada a Inglaterra para trabajar con Robert Robinson, Premio Nobel de Química en 1947, en la Universidad de Oxford, para realizar su tesis doctoral. Robinson ha sido uno de los químicos de productos naturales más influyentes de la primera mitad del siglo XX. Tras finalizar su tesis doctoral empieza a investigar en la química de la penicilina y, posteriormente, en las reacciones químicas implicadas en la biosíntesis de productos naturales. Ha trabajado en el Medical Research Council y en la Universidad de Sussex.

Fue galardonado con el Premio Nobel junto a  Vladimir Prelog (1906-1998), profesor en la ETH de Zürich, que lo recicbió por sus estudios fundamentales en estereoquímica.

Cornforth también ha sido galardonado con la Medalla Davy en 1968, uno de los máximos galardones de la Royal Society.

cornforth-sourceHa estado involucrado en el papel del científico como ciudadano. Se quedó completamente sordo a los 19 años (por enfermedad), lo que no le impidió investigar, incluso actualmente, a los 96 años, siendo profesor emérito en la universidad de Sussex. Una entrevista muy interesante a Cornforth se puede leer aquí.

Nota: Este post participa en el XXVII Carnaval de Química, que se aloja en este blog Educación Química

Bernardo Herradón
CSIC

12 de agosto de 2013: Schrödinger, el Doodle de Google y la cultura científica.

El 12 de agosto de 1013, el Doodle de Google nos recuerda que se cumplen 126 años del nacimiento del físico austriaco Erwin Schrödinger (1887-1961), quien fue galardonado en 1933 con el premio Nobel de Física junto con el físico y matemático inglés Paul Dirac por sus contribuciones a la Mecánica Cuántica, imprescindible para el estudio del átomo. La ecuación de Schrödinger es fundamental tanto en Física como en Química. A cada orbital atómico (definido por 3 números cuánticos n, l y m) le corresponde una función de onda, que es solución de la ecuación de Schrödinger, la cual sólo tiene solución analítica exacta para el átomo de hidrógeno e hidrogenoides (sistemas atómicos con un único electrón).

Además, Schrödinger es conocido por la paradoja de su gato. ¿Quieres saber en qué consiste? ¡Preguntémosle a Sheldon Cooper! Lo puedes ver en el siguiente video.

Difusión en prensa: una manera de hacer cultura científica.

La noticia del Doodle ha tenido bastante repercusión en prensa. Según la búsqueda de Google, la noticia ha sido recogida en unas 19.000 noticias de prensa, algunos artículos muy cuidados y detallados; lo que demuestra que la prensa puede ser un excelente instrumento para realizar divulgación científica. Por cierto, no he encontardo ninguna referencia a la noticia ni a la conmemoración en ninguno de los tres grandes periódicos nacionales españoles (tampoco en PÚBLICO). A continuación se dan los enlaces a algunas noticias:

Tendencias. Artículo breve sobre el experimento y Schrödinger. Afirma que el científico es conocido por el experimento del gato; pero todos los científicos sabemos que no es así; como se ha indicado al comienzo de este post.

Ideal de Granada. Este periódico escribe un artículo muy completo y detallado, aunque menciona que se celebra el 124º aniversario y no el 126º. Este error también se ha producido en otros medios, a pesar de que se menciona la fecha de nacimiento: 1887; por lo tanto 2013-1887 = 126; un error científico serio (y no vale la excusa de que los periodistas son de letras).

La opinión de México. También incide en lo del 124º aniversario (sic).

The Guardian. Se hace un breve resumen biográfico de Schrödinger.

CNN México. Describe el experimento mental del gato, pero también explica brevemente su gran aportación a la mecánica cuántica. Un artículo breve y bien escrito en el que se incluye el enlace a su conferencia de aceptación del Premio Nobel en 1933.

Excelsior de México. Describe en detalle el experimento mental del gato y hace un brevísimo recorrido por la vida de Schrödinger.

De Fernando Gomollón (@gomobel)

Implicaciones filosóficas del trabajo de Schrödinger

La investigación de Schrödinger en Mecánica Cuántica ha sido una de las más importantes de la historia de la ciencia; con implicaciones importantes en Química.  El nombre de Schrödinger está unido a todos los grandes físicos de comienzos del siglo XX, que con sus aportaciones a la Mecánica Cuántica cambiaron nuestra visión de la Naturaleza. Junto a Planck, Einstein, Bohr, Sommerfeld, Heissenberg, Born, Dirac, Pauli, Schrödinger forma parte del olimpo científico.

A pesar de sus brillantes aportaciones a la Mecánica Cuántica, Schrödinger, en cierto modo, se desmarcó de la interpretación que desde la Mecánica Cuántica se daba a los fenómenos naturales; nunca le gustó la visión probabilística y no-determinista (compartida con Einstein) y esta disconformidad le llevó a postular su experimento mental del gato.

Desde mediados de la década de los años 1930s, Schrödinger realizó importnates contribuciones a la filosofía de la ciencia. Podemos destacar los libros Mi concepción del mundo, Mi vida (los dos se pueden encontrar en castellano, en la colección Metatemas de Tusquets), Mente y materia (de la misma colección que el anterior) y el libro ¿Qué es la vida? El aspecto físico de la célula viva (también de Metatemas). En este último libro intenta explicar la viada desde la perspectiva de las leyes de la Física. Este libro, originalmente publicado en 1944, fue un revulsivo para que varios jóvenes científicos (físicos y biólogos) se interesasen por los aspectos de la vida, especialmente la transmisión genética; y, es considerado uno de los puntos de rranque de la Biología Molecular. También recomiendo el libro Mente y materia ¿Qué es la vida? Sobre la vigencia de Erwin Schrödinger, de Gumbrecht y otros (Katz Editores, 2010), que analiza la obra filosófica de Schrödinger.

 

Nota: Gracias a Real Sociedad Española de Física por recomendar el vídeo y facilitar el link).

Bernardo Herradón García

CSIC

Emil Fischer

9 de octubre de 1852. Nacimiento de Emil Fischer. Premio Nobel de Química en 1902 por sus investigaciones en moléculas de interés biológico: las purinas y los azúcares. Su investigación abarcó prácticamente todos los aspectos de la química orgánica de su tiempo, desde péptidos y proteínas a heterociclos, pasando por estereoquímica y síntesis orgánica. Se le puede considerar uno de los padres de la bioquímica por sus investigaciones en moléculas de interés biológico y su hipótesis (metafórica) de la llave y la cerradura para explicar la especificidad enzimática; lo que constituye la base del reconocimiento molecular. Durante la Primera Guerra Mundial fue el responsable de organizar la producción química alemana. Se suicidó el 15 de julio de 1919 posiblemente como consecuencia de la muerte de dos de sus hijos durante la guerra.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Pildoras químicas: el mol.

Hoy se cumple el 41 aniversario del establecimiento del mol como la unidad de materia en el Sistema Internacional de Unidades Científicas.

El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos de carbono hay en 0’012 kg de carbono-12. La naturaleza de las partículas elementales debe especificarse y pueden ser átomos, moléculas, iones, electrones u otras partículas. La cantidad de partículas contenidas en los 12 gamos de carbono-12 es, por definición, el Número de Avogadro.

Para más información, ver este post.

 

Bernardo Herradón García
CSIC
b.herradon@csic.es

William Crookes (1832-1919)

17 de junio de 1832. Nacimiento de William Crookes. Uno de los más importantes experimentalistas de física y química de la historia. Descubrió el talio (elemento número 81) por métodos espectroscópicos, aunque no lo aisló. Realizó experimentos para separar los elementos químicos que constituyen el grupo de los lantánidos o tierras raras. Inventó instrumental de laboratorio, como el radiómetro que usó para medir la radiación infrarroja y diversos tubos de vacío, entre ellos el tubo de Crookes, que sirvió para estudiar los rayos catódicos y permitió el descubrimiento del electrón.

crookes

crookes_tube_two_views


Bernardo Herradón García
CSIC
b.herradon@csic.es

Conmemoraciones químicas del 27 de mayo

Algunas conmemoraciones químicas del 27 de mayos tienen que ver con la química nuclear, aplicaciones de la química de polímeros y descubrimientos esenciales que permitieron descifrar el código genético.

27 de mayo de 1887. Nacimiento de Kasimierz Fajans. Descubrió la ley de desplazamiento radiactivo que explica las transformaciones nucleares. Esta ley la formuló de manera independientemente y casi simultáneamente con Frederick Soddy; conociéndose como Ley de Fajans-Soddy. Esta ley permite predecir la evolución de los isótopos radiactivos.

2000px-radioactive_decay_modes

Fajans descubrió varios núcleos radiactivos y el elemento químico protactinio (número atómico: 91). También formuló la regla de Fajans que permite predecir si un compuesto inorgánico es covalente o iónico.

27 de mayo de 1930. Se patenta la primera cinta adhesiva (el popular “celo”) de uso generalizado aún 80 años después. Estaba basada en el celofan, que es una modificación de la celulosa, un polímero natural. El invento fue realizado por Richard Drew, que trabajaba en la compañía 3M.

27 de mayo de 1961. Nirenberg y Matthaei realizan un experimento clave para empezar a descifrar el código genético. Encuentran que el polinucleótido formado sólo por unidades Los resultados obtemde uridina se transcribe en una proteína que sólo tiene el aminoácido fenilalanina. Nirenberg recibió el Premio Nobel de Medicina en 1968 (compartido con Khorana y Holley).

nirenberg

Los resltados obtenidos por Nirenberg y otros científicos (Ochoa entre ellos) a principios de los años 1960s demostraron el dogma de la biología molecular (DNA hace RNA, RNA hace proteína) y caracterizaron la relación entre la secuencia de bases de un gen y la secuencia de aminoácidos de una proteína.

Nirenberg, nacido en Nueva York (1927), se licenció en Zoología y Química (¡una combinación curiosa!) por la Universidad de Florida.  Realizó la tesis doctoral en química biológica en la Universidad de Michigan (1957). Realizó una estancia postdoctoral en el Instituto  Nacional de Artritis y Enfermedades Metabólicas del NIH (Nacional Institute of Health), donde permaneció el resto de su carrera científica.

Desde su incorporación al NIH, empezó a investigar la existencia de mRNA y su papel en la síntesis de proteínas (para confirmar la propuesta del dogma de la biología molecular de Francis Crick) y con su colaborador Heinrich Matthaei desarrolló una técnica que permitía detectar la síntesis de proteína en acción, a través del estudio de la  incorporación de aminoácidos radioactivos en proteínas. Esta técnica les permitió  realizar alguno de los experimentos más espectaculares de la historia de la ciencia al demostrar (en el primer experimento de la serie) que el ácido poliuridílico [un RNA sólo con nucleótidos con uracilo (U) como única base] es un precursor de polifenilalanina.

En esa época se estableció una carrera entre diversos grupos de investigación (entre los que destacaba el de Severo Ochoa) por descifrar el código genético, siendo el de Nirenberg el primero en conseguirlo. A partir de ahí, la historia es conocida…

codigo-genetico

Nirenberg recibió el Premio Nobel de Medicina en 1968, compartiéndolo con Holley y Khorana (dos químicos). ¡La época en la que los químicos eran galardonados con los Premios Nobel de Medicina!

En noviembre de 2009, la ACS (American Chemical Society) eligió el desciframiento del código genético como uno de los acontecimientos químicos relevantes (Nacional Historic Chemical Landmark). Curiosamente, fue el primer empleado del gobierno federal de Estados Unidos galardonado con un Premio Nobel. EL NIH tiene una página web con numerosa información sobre la vida e investigación de Nirenberg y, en 2004, publicó un artículo personal sobre sus investigaciones en Trends Biochem. Sci. 2004, 29, 46.

Nota: Este post participa en la XV Edición del Carnaval de Química, que aloja el blog El cuaderno de Calpurnia Tate.

carnavaldequimica_15

Bernardo Herradón García
CSIC
b.herradon@csic.es

Lavoisier y el oxígeno (1776)

Hoy hace 236 años (19 de abril de 1776) que Antoine-Laurent Lavoisier (1743-1794) presentó, en la Real Academia de Ciencias de Francia, sus investigaciones sobre la combustión; reclamando la prioridad del descubrimiento del oxígeno al identificar su papel fundamental en la combustión. Aunque el oxígeno fue aislado unos años antes, independientemente, por Carl Wilhem Scheele (1742-1786) y Joseph Priestley (1733-1804); estos no interpretaron correctamente su comportamiento químico. La prioridad del descubrimiento ha sido teatralizada en la obra Oxigeno, escrita por Roald Hoffmann y Carl Djerassi.

Lavoisier nació en el seno de una familia acaudalada. Aunque obtuvo un título de licenciado en leyes, nunca llegó a ejercer como tal. Desde joven se interesó por la ciencia y recibió clases en diversas disciplinas. Se interesó por la política, llegando a ser administrador de la Ferme Générale, una institución de carácter semi-feudal que recolectaba impuestos por mandato real.
En sus investigaciones contó con la ayuda inestimable de su esposa Anne-Marie Paulze (1758-1836), que colaboró con Lavoisier en experimentos, ilustró sus publicaciones y tradujo numerosos textos escritos por los químicos ingleses de la época.

Entre las aportaciones de Lavoisier hay que destacar las siguientes:

1) Rigor en las medidas. Perfeccionó las balanzas para hacer pesadas precisas.
2) En su libro Réflexions sur le phlogistique (1983) derribó la teoría del flogisto debido a su inconsistencia para explicar hechos experimentales.
3) Estableció firmemente el concepto de elemento químico (el que no se puede descomponer en partes más pequeñas) a diferencia de la sustancia compuesta. Caracterizó como elemento químico el oxígeno, el nitrógeno, el hidrógeno, el fósforo, el mercurio, el zinc y el azufre.
4) Comprobó que cuando un metal se oxida al aire, la ganancia de peso del material obtenido respecto al metal es igual al peso que pierde el aire.
5) También realizó experimentos en sentido contrario. Liberó oxígeno de algunos compuestos como el óxido de mercurio (repitiendo el experimento de Priestley) y comprobó que el peso perdido por el óxido era igual al ganado por el ambiente que le rodeaba.
6) Estos experimentos le llevaron a formular la ley de la conservación de la masa, que cronológicamente fue la primera ley básica en química, enunciada en 1775. La ley afirma que la masa ni se crea ni se destruye, sólo se transforma.
7) Identificó inequívocamente el papel del aire en la combustión y oxidación. Repitió los experimentos de químicos anteriores sobre el aire y sus componentes, dando nombre al oxígeno y al nitrógeno (azote, que significa ‘sin vida’ en griego, y que actualmente es el término en francés para el nitrógeno). La importancia del oxígeno para explicar las reacciones químicas fue magistralmente desvelada por Lavoisier en 1776, por lo que frecuentemente se considera a Lavoisier el descubridor del oxígeno. La historia del descubrimiento del oxígeno lleva a la reflexión sobre el descubrimiento científico y la consciencia de haber descubierto algo.

lavoisier

8 ) El nombre oxígeno procede de las palabras griegas oxys (ácido) y genos (generación). Propuso la teoría de que el oxígeno en una sustancia química producía la acidez de la misma; puesto que en aquella época, todas las sustancias con carácter ácido contenían oxígeno. Décadas después se encontró que esta regla no es general.
9) En 1783 anunció que el agua está constituida por la combinación de hidrógeno y oxígeno, redescubriendo el resultado obtenido previamente por Henry Cavendish (1731-1810). Renombra el gas inflamable de Cavendish como hidrógeno (generador de agua en griego).
10) En colaboración con el matemático Pierre-Simon de Laplace (1749-1827), realizó experimentos de calorimetría para determinar el calor desprendido en las reacciones químicas, especialmente en la producción de dióxido de carbono; que comprobó que se formaba tanto al quemar una sustancia química con carbono como en la respiración; proponiendo que ésta era una combustión lenta.
11) Probó que la composición química del carbón (el combustible usado en la época) y el diamante era la misma: carbono puro. Esto lo realizó quemando ambas sustancias (usando la luz del Sol), comprobando que se formaba la misma sustancia química (dióxido de carbono) y en la misma cantidad. Estos experimentos fueron corroborados y perfeccionados posteriormente por Smithson Tennant (1761-1815).
12) En su libro Méthode de nomenclature chimique (1787) elaboró un sistema de nomenclatura, lo que facilitaría el intercambio de información de una manera más precisa. La mayoría de la nomenclatura de Lavoisier está aún en uso.
13) En su libro Tramité Élémentaire de Chimie (1789) sistematizó los conceptos químicos conocidos en la época.
14) Colaboró en la instauración del Sistema Métrico Decimal.

Los numerosos resultados alcanzados por Lavoisier le proporcionaron gran prestigio entre la comunidad científica. Sin embargo, su vida y trayectoria científica fueron trágicamente segadas como consecuencia de la Revolución Francesa, que le condenó por sus actividades como recaudador de impuestos. A pesar de los ruegos para que se perdonara su vida en consideración a sus grandes aportaciones científicas, fue decapitado el 8 de mayo de 1794. Fue una gran pérdida para la química. El matemático Joseph-Louis de Lagrange (1736-1813) dijo “bastó un instante para separar su cabeza del cuerpo, Francia no producirá otra cabeza igual en un siglo“.

Adaptado del libro Los Avances de la Química (Libros de la Catarata-CSIC, 2012).

imagen_libro_aqis_br1

Esta entrada participa en la XIV edición del Carnaval de Química, que aloja el blog Educación Química.

Bernardo Herradón  García
CSIC
b.herradon@csic.es

Grandes químicos: William Henry Perkin

En este mes de marzo se ha celebrado el nacimiento de William Henry Perkin (12 de marzo de 1838 – 14 de julio de 1907). Sintetizó el primer colorante sintético (la mauveina o malva de Perkin). Perkin era un niño prodigio de la química. A los 15 años empezó a investigar con Hoffman en Londres. Cuando tenía 18 años, Hoffman le asignó la síntesis de la quinina, que es una sustancia química natural que se aisla de la corteza del árbol de la quina y que sirve para tratar la malaria. En aquella época había bastantes casos de malaria en Europa y se estableció un premio para el químico que lograse sintetizar quinina en el laboratorio. En esa época no se conocía la estructura de la quinina (bastante compleja), sino sólo su fórmula molecular, Hoffman y Perkin pensaron ingenuamente que se podía sintetizar por oxidación de anilina. Perkin era un entusiasta investigador; que, aparte de trabajar en el laboratorio de Hoffman, realizaba experimentos caseros (montó un laboratorio en su casa). Durante las vacaciones de la Semana Santa de 1856, Perkin realizó experimentos que no dieron lugar a la quinina; sino a una especie de alquitrán oscuro. Normalmente, cualquier químico tira ese residuo, pero Perkin se dio cuenta de que el color era persistente, los matraces no se conseguína limpiar y pensó que podía ser un colorante. Refinó los experimentos y ello dio lugar al primer colorante sintético y, lo que es más importante, promovió una investigación intensa sobre colorantes, tintas, pinturas, etc; que aún actualmente es una de las industrias químicas más potentes.

Disponer de colorantes sintéticos es una gran ventaja para la sociedad. Ya no tenemos que depender de fuentes naturales para su obtención. Las fuentes naturales frente a las sintéticas tienen varias ventajas: no se agotan, no dependen de la fuente de suministro, son más consistentes en calidad, son mas variadas en colores y son más baratas.

Por supuesto, Perkin no sintetizó quinina (hubo que esperar al año 1944, primera síntesis realizada por Woodward, Premio Nobel en 1965, y von Doering, fallecido en 2011) pero tuvo la mente lúcida para aprovechar resultados negativos de una investigación. Con la industria de los colorantes, Perkin se hizo rico muy joven y luego dedicó todos sus esfuerzos a ser uno de los químicos orgánicos más brillantes de la segunda mitad del siglo XIX; descubriendo, entre otras cosa, la reacción de Perkin.

Una excelente biografía de Perkin es Mauve, escrito por Simon Garfield.

mauve_libro

 
Bernardo Herradón García
CSIC
b.herradon@csic.es

22 de noviembre de 1875: Mendeleev y el galio.

El 22 de noviembre de 1875, Dimitri Mendeleev publicó un artículo en “Comptes Rendus des Séances de l’Academie des Science” en la que cuestionaba las propiedades físico-químicas del elemento galio, descubierto unos meses antes. Mendeleev afirmaba que las propiedades del galio debían ser las del eka-aluminio, cuya existencia había predicho en 1869 al proponer la tabla periódica de los elementos químicos. La referencia completa del artículo es Compt. Rendus Acad. Sci. 1897, 81, 969-971. Se pueden ver los artículos del tomo 81 (incluso descargarlo completo) en este enlace.

En su artículo (J. Russ. Chem. Soc., 1869, 1, 60) y en su libro de texto (Principles of Chemistry, 1869), Mendeleev desarrolló su tabla periódica ordenando los 62 elementos conocidos en la época de acuerdo con su peso atómico, pues aún no se conocía el número atómico. Mendeleev  dejó cuatro huecos para elementos que predijo que se descubrirían posteriormente y predijo sus propiedades físicas y químicas.

El primero de los elementos predichos por Mendeleev que fue descubierto fue el galio. Este elemento fue aislado en el verano de 1875 por Lecoq de Boisbaundran que lo bautizó como galio en homenaje a su país (Francia, Galia) o a sí mismo (“Lecoq”, gallo). Las propiedades físicas determinadas para el nuevo elemento, especialmente su densidad, no concordaban con las propuestas por Mendeleev, que pidió la revisión de los resultados, pues consideraba que la muestra de  galio estaba contaminada. Mendeleev tenía razón. Con una muestra pura de galio se determinaron las propiedades físicas y químicas, que coincidieron con las predichas por Mendeleev.

Posteriormente se aislaron los otros elementos químicos predichos por Mendeleev. El  escandio se descubrió en 1879 (por Nilson) y el germanio en 1886 (por Wikler). El tecnecio es el elemento radiactivo de número atómico más pequeño, siendo preparado artificalmente en 1925 (por Nodack y colaboradores), auque no fue confirmado hasta 1937 (por Perrier y Segré). Estos elementos tienen las propiedades predichas por Mendeleev.

Antonio Marchal (Universidad de Jaén) ha diseñado una tabla periódica magnífica, construida en cerámica, que está en la fachada de la Facultad de Ciencias Experimentales y de la Salud de la Universidad de Jaén. En esta tabla se representan en blanco los cuatro elementos predichos por Mendeleev.

Y empezó a cimentar su fama. Posiblemente, el químico más importante de todos los tiempos.

Lecturas recomendadas.

Bernardo Herradón García
CSIC
herradon@iqog.csic.es

8 de febrero de 2011: Mendeleev y la inauguración del AIQ en España.

177º Aniversario del nacimiento de Mendeleev. Inauguración del Año Internacional de la Química en España.

Dimitri Ivanovich Mendeleev nació el 8 de febrero de 1834 en Tobolsk (Siberia) y falleció el 2 de febrero de 1907 en San Petersburgo. Fue uno de los asistentes más jóvenes al congreso de Karlsruhe en septiembre de 1860 que sirvió de origen para empezar a sistematizar la química, estableciendo un sistema de pesos atómicos y moleculares, lo que repercutió en la manera de formular.

La asistencia al congreso sirvió de inspiración a Mendeleev para empezar a elaborar la Tabla Periódica de los Elementos Químicos, una de las aportaciones principales de la química a la historia de la cultura universal.

Mendeleev concibió la Tabla Periódica mientras preparaba un libro de texto (Principios de Química, publicado en 1869) para sus clases de Química General en la Universidad de San Petersburgo. Mendeleev pensó en un sistema útil didácticamente para ordenar  los 60 elementos químicos conocidos en la época. Puesto que en esa época no se conocía la composición del átomo, no se podía relacionar la posición del elemento en la Tabla Periódica con el número atómico (como hoy hacemos); por lo tanto, Mendeleev colocó los elementos químicos según su peso atómico, observando unas ciertas regularidades cada cierto número de elementos.

Mendeleev publicó su Tabla Periódica casi al mismo tiempo que Meyer. Mendeleev la publicó en ruso y Meyer en alemán, el idioma científico dominante de la época. Sin embargo, la tabla que ha perdurado ha sido la de Mendeleev. Esto fue debido a que Mendeleev refinó su tabla, corrigiendo el peso atómico de elementos conocidos, sencontrando una mejor disposición de los elementos químicos, correlacionó la posición de los mismos con las propiedades de sus compuestos y, la mayor genialidad, fue capaz de predecir la existencia de nuevos elementos químicos.

La Tabla Periódica alcanzó su madurez con el trabajo de Henry Moseley (1887-1915), uno de los más grandes científicos de todos los tiempos; que, por desgracia murió en la batalla de Gallipoli durante la primera Guerra Mundial. Fue capaz de correlacionar los espectros de rayos X de los elementos químicos con su posición en la Tabla Periódica, siendo capaz de ordenarlos por el número atómico y dando un fundamento teórico a la Tabla Periódica de los Elementos Químicos. Sin duda alguna, Moseley merece ser recordado en la Tabla Periódica y pido que algún próximo elemento sea nombrado en su honor.

La Tabla Periódica de los Elementos Químicos contiene una enorme información científica. Recomiendo su aprendizaje; pero no de manera obligatoria (como hacemos con nuestros estudiantes), sino ir “construyéndola mentalmente, visualizándola” según se van adquiriendo conocimientos químicos. Veréis que es muy divertido ir colocando los elementos químicos en sus casillas correspondientes a partir de los que conocemos de los compuestos químicos. Llegado a esta situación, aumentaremos considerablemente nuestro conocimiento de química.

En el programa de A Hombros de Gigantes del pasado 7 de enero, comenté que la Tabla Periódica iba a sufrir cambios en el peso atómico estándar de 10 elementos. Ya se ha publicado el artículo describiendo los cambios, lo que comentaré en un próximo post.

Hoy se ha inaugurado oficialmente el Año Internacional de la Química en España. El acto ha estado presidido por Alfredo Pérez Rubalcaba, vicepresidente del gobierno y químico, contando con la presencia de otros dos ministros y muchísimas personalidades políticas, académicas y científicas entre el püblico; que ha sido muy numeroso (más de 500 personas), abarrotando el salón de actos de la sede central del CSIC y dos salas adicionales habilitadas para seguri el acto por televisión.

Bernardo Herradón

IQOG-CSIC

herradon@iqog.csic.es

Historia de la Química

Sitios de interés sobre la historia de la Química

Chemical Heritage Foundation

En la página de la fundación Nobel hay mucha información científica con perspectiva histórica, incluyendo biografías de los galardonados. Los galardonados en Química se encuentran en  los Premios Nobel en Química. Recientemente se ha publicado una página web recogiendo los Premios Nobel en Química Orgánica, clasificados por temas de trabajo y con comentarios interesantes sobre la relevancia de la investigación galardonada.