Archivos de la categoría: Grandes químicos

Recordando a Linus Pauling

Hoy es el 113º aniversario del nacimiento de Linus Pauling (1901-1994).

Algunos artículos sobre Pauling se pueden leer en:
1) Linus Pauling, uno de los tres grandes de la historia de la química,….

2) Linus Pauling (1901-1994)

3) La pizarra de Pauling

Hoy, en mi charla en la Universidad de Alcalá, también hablaré de Pauling y de otros grandes científicos (http://www.losavancesdelaquimica.com/).

También hay que recordar que Pauling fue un gran cristalógrafo, que usó la cristalografía como herramienta para entender el enlace químico, la estructura de sales inorgánicas y la conformación de péptidos y proteínas. Su tesis doctoral fue sobre la estructura de uno de los materiales de moda, la molibdenita. La tesis se puede descargar aquí.
Muchísimos ejemplos y enseñanzas se pueden encontrar en sus dos obras maestras “General Chemistry” y “The Nature of the Chemical Bond”.

También le podemos considerar el fundador de la medicina molecular y la biomedicina.

Nota: Este post participa en la Edición Ge del Carnaval de Química que aloja Deborah García Bello (@profedeciencia) en su blog dimetilsulfuro.

Gelogocarnavalquimica

Bernardo Herradón (@QuimicaSociedad)
Director del curso de divulgación “Los Avances de la Química y su Impacto en la Sociedad

Recordando a Michael Faraday. Parte 1. Infancia y juventud.

Humphry Davy (1778-1829) ha sido uno de los químicos más importantes de la historia. Aunque Davy falleció relativamente joven (a los 50 años, en Suiza, durante un viaje por Europa), sus logros científicos fueron inmensos; sin embargo, él presumía de que su mayor descubrimiento fue el de Michael Faraday’.

Michael Faraday (1791-1867) ha sido uno de los más grandes científicos de la historia de la ciencia, siendo considerado como el mejor experimentalista de todos los tiempos.

Faraday nació el jueves 22 de septiembre de 1791 en Newington Butts (Southwarks), entonces un pueblo en el sur de Londres (a alrededor de 1’5 km al sur del puente de Blackfriars). Los padres de Michael Faraday, James y Margaret, habían emigrado en 1786 desde Westmorland (en el noroeste de Inglaterra y una de sus regiones menos pobladas) a Newington Butts; donde nacieron sus tres hijos (Elisabeth, 1787; Robert, 1788; Michael, 1791; y Margaret en 1802). La familia Faraday era muy humilde, el padre trabajó en diversos oficios, encontrando trabajo como herrero en un barrio del oeste de Londres, donde la familia de trasladó a mitad de la década de 1790s.

Faraday siempre reconoció que el traslado desde Westmorland a los alrededores de Londres le permitió realizar una carrera científica, lo que hubiese sido imposible en el pueblo de origen de sus padres.

La familia tenía fuertes convicciones religiosas; eran sandemanianos, una secta que no aceptaba el poder de la iglesia anglicana ni estaban de acuerdo con sus doctrinas (eran disidentes, dissenter, frecuentes en la Gran Bretaña de la época). Este hecho marcó la vida de Faraday, pues si no se pertenecía a la iglesia anglicana no se podía ingresar en ciertas instituciones, como las universidades de Oxford o Cambridge (John Dalton también ‘sufrió’ esta circunstancia; pues era cuáquero, también una secta disidente). Su implicación con los sandemanianos, hizo que Faraday no asistiese a actos oficiales, como bodas reales, o se encontrase alejado de algunas instituciones, como algunas sociedades científicas. En un próximo post se comentarán algunas implicaciones de las creencias religiosas de Faraday.

En cualquier caso, el ambiente familiar hizo que Faraday sólo pudiera recibir una educación muy elemental y tuvo que trabajar desde la niñez (lo que tampoco era extraño en la época). A la edad de 13 años recién cumplidos, Faraday encontró trabajo en una imprenta y librería (regentada por el Sr. Ribeau), empezando como repartidor de periódicos y aprendiz de encuadernador (en la imagen se muestra la fachada de la tienda).

Este trabajo fue una bendición para el joven Michael, pues le permitió leer mucho de lo que encuadernaba o vendía, mostrando especial interés por libros científicos, como la sección de electricidad de la Enciclopedia Británica, o el libro de divulgación Conversations on Chemistry de Jane Marcet (1769-1858) publicado en 1805 de forma anónima. Por otro lado, el trabajo como encuadernador le permitió adquirir habilidad manual, que le sirvió para su posterior trabajo científico. Su habilidad y buen gusto a la hora de encuadernar libros le permitió realizar una carrera científica.

El apoyo de Ribeau fue decisivo en la fomación de Faraday, permitiéndole realizar experimentos en el sótano de la imprenta. Faraday trabajó para Ribeau hasta octubre de 1812, en que empezó a trabajar como oficial con Henri De La Roche, otro encuadernador, trabajo que encontró con la ayuda de Ribeau.

Por aquella época, el joven Faraday era muy aficionado a asistir a conferencias y sesiones experimentales científicas, especialmente las impartidas por John Tatum (1772-1858), en la City Philosophical Society, institución fundada por Tatum. Faraday tomaba notas detalladas de las conferencias y experimentos y las encuadernaba.

En febrero de 1812, Ribeau enseñó las notas de las conferencias de Tatum, encuadernadas por Faraday, a un cliente, William Dance (1755-1840), músico inglés importante en su época y uno de los promotores de la fundación de la Royal Institution (RI). Dance quedó impresionado por el trabajo de Faraday y le regaló entradas para asistir a 4 conferencias que Davy iba a impartir en la RI (en la imagen, una imagen reciente del auditorio de la RI, que no ha cambiado mucho desde la época de Davy).

Ese generoso gesto cambió la historia de la ciencia.


…..CONTINUARÁ…..

Nota: Este es el post final de la XXVII Edición del Carnaval de Química, organizado por el autor de este artículo en el blog Educación Química. Este post ha sido adaptado del libro Los Avances de la Química.

Bernardo Herradón
CSIC

Píldoras químicas: recordando a Victor Meyer

El 8 de septiembre de 1848 nació Victor (o Viktor) Meyer (1848-1897), Uno de los químicos orgánicos más influyentes del siglo XIX. Descubrió el tiofeno e investigó la reactividad de compuestos aromáticos, siendo uno de los máximos defensores de la estructura del beneceno propuesta por Kekulé (en la imagen. la manera propuesta por  Kekulé para los derivados del benceno)

Fabricó un aparato para determinar la densidad de un vapor, lo que facilitó la determinación de pesos atómicos y moleculares (en la imagen, un esquema del aparato).

Colaboró con algunos de los químicos más destacados del siglo XIX, como Bunsen y von Baeyer. Fue profesor en la ETH (Zürich), Universidad de Göttingen (ocupando la cátedra que había ocupado Wöhler) y Universidad de Heidelberg (sustituyendo a Bunsen).

Nota: Esta entrada participa en el XXVII Carnaval de Química, que se organiza en el blog Educación Química.

Bernardo Herradón
CSIC

Dorothy Crowfoot-Hodgkin: científica excepcional.

La insulina es una hormona peptídica que regula el metabolismo de los carbohidratos. Los esteroles constituyen un grupo de productos naturales (metabolitos secundarios) con multitud de funciones biológicas; siendo el colesterol el congénere más relevante, que es un componente esencial de las membranas de las células de los mamíferos, precursor de la biosíntesis de numerosos esteroides (esteroidogénesis, ver figura), entre los que se pueden destacar diversas hormonas responsables de los rasgos sexuales (testosterona, estradiol y progesterona), hormonas reguladoras del balance de agua y electrolitos (aldosterona), hormonas reguladoras de procesos inflamatorios e inmunomoduladores (cortisol) y ácidos biliares (ácido cólico) que favorecen la digestión de las grasas. La penicilina, descubierta por Fleming y estudiada por Florey y Chan (los tres compartieron el Premio Nobel de Medicina en 1945), supuso una revolución en el tratamiento de las enfermedades causadas por bacterias, iniciando un área de investigación multidisciplinar en antibióticos. La vitamina B12 es un grupo de moléculas relacionadas estructuralmente que es esencial para los mamíferos, cuya deficiencia causa serias enfermedades en el desarrollo del sistema nervioso y de los glóbulos rojos; el papel químico de la vitamina B12 es participando como cofactor en una amplia variedad de reacciones enzimáticas (isomerizaciones, deshalogenaciones y transferencias de grupos metilo). Una peculiaridad estructural de la vitamina B12 es la presencia de un enlace entre un átomo metálico (el cobalto) y un átomo de carbono, siendo uno de los pocos compuestos organometálicos presentes en la naturaleza.

Aparte de su gran relevancia biológica, ¿qué tienen en común estas cuatro moléculas? La respuesta: Dorothy Crowfoot-Hodgkin.

Dorothy Crowfoot nació el 10 de mayo de 1910 en El Cairo, donde su padre, John W. Crowfoot, trabajaba para el Servicio Egipcio de Educación. En 1916, se produjo su traslado a Sudán, donde su padre había sido nombrado Director Adjunto de Educación. Durante este tiempo, Dorothy y su madre (Grace M. Hood) tuvieron tiempo para fomentar aficiones: coleccionismo y dibujos de flores (actualmente donados al Jardín Botánico de Kew), expediciones arqueológicas, amor por el arte, especialmente en tejidos textiles antiguos (de los que llegó a ser una experta internacional). Durante esta época, se fomentó su afición de colores y pautas, que fueron de utilidad para su posterior trabajo en cristalografía. Durante la Primera Guerra Mundial, Dorothy y sus hermanas menores (Joan y Betty, que nacieron en Sudán) se trasladaron a vivir con sus abuelos en Worthing (Inglaterra).

El interés de Dorothy por la ciencia, y especialmente por la química, empezó muy pronto, a los 10 años ya realizaba experimentos sencillos en su casa y a los 15 años leyó el libro The Nature of the Things escrito por William H. Bragg (el padre de la cristalografía química, Premio Nobel de Física en 1915), en la que éste destacaba que esta técnica experimental, aún incipiente, permitiría “ver” los átomos y las moléculas; lo que le pareció fascinante. Recomiendo el magnífico post de Ramón Andrade contando la influencia que este libro tuvo en la joven Dorothy.

Dorothy siguió una formación en química estudiando en la Universidad de Oxford (1928-1932), asistiendo a clases impartidas por Robert Robinson (Química orgánica, Premio Nobel de Química en 1947) y Cyril N. Hishelwood (Química física, Premio Nobel en 1956) y con excelentes conferenciantes como Ernest Rutherford (Premio Nobel de Química en 1908), Niels Bohr (Premio Nobel de Física en 1922) y Peter Debye (Premio Nobel de Química en 1936). Pero la conferencia que más le impactó fue la de un joven cristalografo de la Universidad de Cambridge, John D. Bernal (1901-1971; en la imagen), con el que decidió que haría su tesis doctoral. Durante su estancia en Oxford, Dorothy había iniciado su investigación en cristalografía en Oxford, publicando con Herbert M. Powell su primer artículo sobre la estructura de los haluros de dialquiltalio (Nature 1932, 130, 131-132).

Bernal está considerado como uno de los científicos británicos más brillantes del siglo XX. Un científico capaz de trabajar en múltiples temas. Durante su estancia en el grupo de Bernal, Dorothy Crowfoot aprendió que no hay fronteras entre las ciencias, que se puede realizar una investigación entre la química, la bioquímica, la física, y la cristalografía.

Tras finalizar su tesis doctoral en 1934 (sobre la estructura de esteroides; corrigiendo las estructuras propuestas inicialmente, fórmula de la izquierda en la imagen), Dorothy volvió a la Universidad de Oxford, donde permaneció durante el resto de su vida, siendo uno de los científicos más queridos (debido a su generosidad) y admirados de su época, creando una escuela de investigadores en cristalografía con intereses multidisciplinares. Desde 1937, tras su matrimonio con Thomas Hodgkin, su apellido cambió a Crowfoot-Hodgkin.

Elucidar la estructura de las cuatro moléculas indicadas al comienzo de este artículo ya sería suficiente para considerar a Dorothy Crowfoot como uno de los más importantes cristalógrafos (independientemente del género) de la historia, pero además hizo muchas más cosas, científicas (entre otras moléculas importantes se pueden citar los estudios con morfina y con gliotoxina) y sociales.

Por supuesto, su investigaciones más recordadas (y que le llevaron la mayor parte de su vida) fueron la determinación estructural de la insulina y de la vitamina B12.

La insulina es una hormona que fue aislada en 1921 por Banting y Best de las células beta de los islotes de Langerhans del páncreas. Desde las primeras investigaciones se tuvo constancia de la relevancia de la insulina en el metabolismo de los carbohidratos y otras actividades fisiológicas; cuyo defecto podría conducir a enfermedades, como la diabetes.. Banting recibió el Premio Nobel de Medicina en 1923 (compartido con MacLeod), aunque con bastante polémica, que se puede leer aquí. Desde aquellos años, la insulina atrajo el interés de los químicos por conocer su estructura, siendo la cristalografía una herramienta poderosa en estos estudios. En aquella época no existín alas facilidades de equipamiento, métodos de cálculo y equipamineto informático de la actualidad (casi todo se tenía que hacer “a mano”), pero al mismo tiempo, este tipo de sstudios sirvieron para que la ciencia de la cristalografía química creciera. Em 1925 se pudo obtener insulina por cristalización (J. J. Abel) y en 1934 se identificó la presencia de cationes Zn (II) en la insulina aislada del páncreas.

La investigación de Crowfoot-Hodgkin sobre la insulina abarcó un periodo de 34 años, interrumpidos parcialmente por los estudios en vitamina B12 y penicilina, que empezó en 1934, cuando no se conocía la estructura primaria (ver imagen, determinada por Sanger en 1952; Premio Nobel de Química en 1958, por la determinación de la estructura de la insulina, y en 1980, por desarrollar métodos de secuenciación de ácidos nucleicos). La investigación de Crowfoot-Hodgkin en insulina permitió avanzar en el método del desplazamiento isomorfo, fundamental actualmente para determinar la estructura cristalina de proteínas. También permitió profundizar en los mecanismos de oligomerización de la insulina y sirvió de base para el diseño de derivados de insulina que podrían tener aplicaciones terapéuticas.

La investigación en la estructura de la vitamina B12 es una obra maestra de la ciencia. En su momento fue la estructura química no-oligomérica más compleja resuelta cristalográficamente. La vitamina B12 es un complejo de corrina con cobalto. La corrina  es un sistema macro-heterocíclico, parecido al de la profirina (componente de los citocromos, grupo heme de la hemoglobina, y clorofila). El cobalto de la vitamina B12 es hexacoordinado: cuatro de las valencias de coordinación son con la corrina, una quinta con un grupo dimetilbenzimidazol y la sexta posición es el sitio de recatividad. Como comentado anteriormente, la vitamina B12 es realmente un grupo de moléculas que se diferencian en el sexto ligando unido al cobalto. Este ligando puede ser un grupo ciano (cianocobalamina), un grupo 5′-desoxiadenosil (adenosilcobalamina; con un enlace covalente entre el átomo metálico y el carbono C-5′ del nucleósido, un compuesto organometálico, ver segunda imagen a continuación), un grupo metilo (metilcobalamina; también con enlace alquilo-metal), o un grupo hidroxilo (hidroxocobalamina).

Por todas estas investigaciones, y especialmente por la elucidación estructural de la vitamina B12, fue galardonada con el Premio Nobel de Química en 1964. Sin duda, un reconocimiento merecido.

La investigación de Dorothy Crowfoot-Hodgkin se extendió hasta casi su muerte (el 29 de julio de 1994), trabajando durante casi 60 años con una inmensa influencia en cristalografía, química y bioquímica. Con su investigación, la cristalografía se convirtió en una herramienta poderosa de determinación estructural de moléculas complejas, a partir de la cual se podían obtener datos importantes para entender las propiedades biológicas (lo que hoy se conoce como relación estructura-actividad). Dorothy Crowfoot empezó a trabajar en una época en la que no existían ordenadores, las intensidades se tenían que “determinar a ojo” y las estructuras se tenían que “calcular a mano”, contribuyó a desarrollar métodos que facilitasen el trabajo de “traducir” el dato experimental (intensidad de señales que se corresponde con densidades electrónicas) en posiciones atómicas. El desarrollo de algoritmos para este fin y la disponibilidad de ordenadores potentes facilitó el trabajo de los cristalógrafos de generaciones posteriores.

Además, Dorothy Crowfoot-Hodgking desplegó una intensa actividad como activista por la paz, intentando establecer lazos científicos y sociales con Extremo Oriente (especialmente China),  y promoviendo el papel de la mujer en la ciencia. Formó parte activa de la fundación de la International Union of Crystallography (IUCr). También fue un miembro activo de la conferencia de Pugwash, movimiento fundado por Bertrand Russell, cuyo objetivo es el desarme nuclear y la paz mundial, siendo su presidenta entre el periodo 1975-1988. Una frase que decía (y que la define) es “tener enemigos es una pérdida de tiempo y energía“.

Sin duda alguna, recordar a esta gran mujer y científico es muy apropiado en cualquier momento y circunstancia, y sirve para  reconocer el gran papel de la mujer en ciencia.

Bibliografía y referencias en INTERNET

 

Nota-1: Este artículo es una versión ampliada del artículo originalmente publicado en la web de la SEBBM

Nota-2: Este post participa en el XXVII Carnaval de Química (el del cobalto, el metal de la vitamina B12), que aloja el blog Educación Química.

Bernardo Herradón García
CSIC
b.herradon@csic.es

 

Emil Fischer

9 de octubre de 1852. Nacimiento de Emil Fischer. Premio Nobel de Química en 1902 por sus investigaciones en moléculas de interés biológico: las purinas y los azúcares. Su investigación abarcó prácticamente todos los aspectos de la química orgánica de su tiempo, desde péptidos y proteínas a heterociclos, pasando por estereoquímica y síntesis orgánica. Se le puede considerar uno de los padres de la bioquímica por sus investigaciones en moléculas de interés biológico y su hipótesis (metafórica) de la llave y la cerradura para explicar la especificidad enzimática; lo que constituye la base del reconocimiento molecular. Durante la Primera Guerra Mundial fue el responsable de organizar la producción química alemana. Se suicidó el 15 de julio de 1919 posiblemente como consecuencia de la muerte de dos de sus hijos durante la guerra.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Humphry Davy

El 29 de mayo se conmemoró el 183º aniversario del fallecimiento de Humphry Davy.

Davy (1778-1829) consiguió aislar metales muy reactivos, como el sodio, el potasio, el estroncio, el bario y el magnesio; así como el boro (simultáneamente a Gay-Lussac). Identificó el cloro y el yodo como elementos químicos, que habían sido descubierto con anterioridad, pero no reconocidos como tales. El cloro había sido aislado por Scheele pero pensaba que era un compuesto químico que contenía oxígeno.

Hizo estudios que definieron el carácter ácido de las sustancias químicas. Lavoisier había postulado que todos los ácidos tenían oxígeno. En 1811 Davy encontró, al estudiar el ácido muriático (clorhídrico, HCl), que no es necesario oxígeno para tener un ácido y llegó a la conclusión de que el principio ‘acidificante’ es el hidrógeno. En 1814, Davy afirmó que la acidez no depende de ninguna sustancia elemental, sino más bien es consecuencia de una combinación peculiar de varios elementos.

En 1815 inventó la lámpara para mineros, que hacía más segura la extracción del carbón. Investigó diversos óxidos, especialmente de nitrógeno, como el óxido nitroso (el gas de la risa) que usó como anestésico y que probó él mismo.

Davy fue una de las figuras científica y humana más destacada de su época (comienzos del romanticismo). De familia muy humilde, con esfuerzo y una muy alta capacidad intelectual, llegó a la cumbre científica y social (fue nombrado Sir). Desde 1802 fue el primer profesor de química de la Royal Institution (RI). Esta institución fue creada en 1799 como centro de investigación, que actualmente sigue en activo; siendo una de las más prestigiosas del mundo, en la que han trabajado científicos de gran importancia. Aunque era muy joven (23 años), Davy fue contratado por la RI para encargarse del laboratorio de química. Instauró un laboratorio de electroquímica (denominado de galvanismo en aquella época) con el que alcanzó rápida fama como científico y como divulgador de la ciencia.

Una de las actividades que implantó fueron las conferencias (con demostraciones prácticas) abiertas para el público en general que llenaban el auditorio de la RI, habiendo dificultades para conseguir entradas. Fueron muy populares en su época y la tradición se mantiene tras más de 200 años. De hecho, las conferencias navideñas de la Royal Institution son frecuentemente transmitidas por la televisión británica (BBC). Davy renunció a su puesto de profesor en la RI en 1812, manteniendo el de director del Laboratorio de Química hasta 1825. Llevó una vida muy activa. Se casó con una viuda rica (que le garantizó bienestar económico), viajó frecuentemente por Europa, impartió conferencias, realizó investigaciones químicas e inventos, asesoró al almirantazgo británico, y fue presidente de la Royal Society (la sociedad científica fundada por Boyle y sus coetáneos).

Aunque Davy falleció relativamente joven (en Ginebra, durante uno de sus viajes), sus logros científicos fueron inmensos; aunque ‘el descubrimiento del que más presumió fue el de Michael Faraday’.

Bibliografía:

1) R. Lamont-Brown, Humphry davy. Life beyond the lamp. Sutton Publishing, 2004.

2) D. Knight, Humphry Davy. Science and Power. Cambridge University Press, 1992.

Nota Adaptado del libro Los avances de la química (Libros de la Catarata-CSIC, 2011).

Bernardo Herradón García
CSIC
b.herradon@csic.es

Conmemoraciones químicas del 27 de mayo

Algunas conmemoraciones químicas del 27 de mayos tienen que ver con la química nuclear, aplicaciones de la química de polímeros y descubrimientos esenciales que permitieron descifrar el código genético.

27 de mayo de 1887. Nacimiento de Kasimierz Fajans. Descubrió la ley de desplazamiento radiactivo que explica las transformaciones nucleares. Esta ley la formuló de manera independientemente y casi simultáneamente con Frederick Soddy; conociéndose como Ley de Fajans-Soddy. Esta ley permite predecir la evolución de los isótopos radiactivos.

2000px-radioactive_decay_modes

Fajans descubrió varios núcleos radiactivos y el elemento químico protactinio (número atómico: 91). También formuló la regla de Fajans que permite predecir si un compuesto inorgánico es covalente o iónico.

27 de mayo de 1930. Se patenta la primera cinta adhesiva (el popular “celo”) de uso generalizado aún 80 años después. Estaba basada en el celofan, que es una modificación de la celulosa, un polímero natural. El invento fue realizado por Richard Drew, que trabajaba en la compañía 3M.

27 de mayo de 1961. Nirenberg y Matthaei realizan un experimento clave para empezar a descifrar el código genético. Encuentran que el polinucleótido formado sólo por unidades Los resultados obtemde uridina se transcribe en una proteína que sólo tiene el aminoácido fenilalanina. Nirenberg recibió el Premio Nobel de Medicina en 1968 (compartido con Khorana y Holley).

nirenberg

Los resltados obtenidos por Nirenberg y otros científicos (Ochoa entre ellos) a principios de los años 1960s demostraron el dogma de la biología molecular (DNA hace RNA, RNA hace proteína) y caracterizaron la relación entre la secuencia de bases de un gen y la secuencia de aminoácidos de una proteína.

Nirenberg, nacido en Nueva York (1927), se licenció en Zoología y Química (¡una combinación curiosa!) por la Universidad de Florida.  Realizó la tesis doctoral en química biológica en la Universidad de Michigan (1957). Realizó una estancia postdoctoral en el Instituto  Nacional de Artritis y Enfermedades Metabólicas del NIH (Nacional Institute of Health), donde permaneció el resto de su carrera científica.

Desde su incorporación al NIH, empezó a investigar la existencia de mRNA y su papel en la síntesis de proteínas (para confirmar la propuesta del dogma de la biología molecular de Francis Crick) y con su colaborador Heinrich Matthaei desarrolló una técnica que permitía detectar la síntesis de proteína en acción, a través del estudio de la  incorporación de aminoácidos radioactivos en proteínas. Esta técnica les permitió  realizar alguno de los experimentos más espectaculares de la historia de la ciencia al demostrar (en el primer experimento de la serie) que el ácido poliuridílico [un RNA sólo con nucleótidos con uracilo (U) como única base] es un precursor de polifenilalanina.

En esa época se estableció una carrera entre diversos grupos de investigación (entre los que destacaba el de Severo Ochoa) por descifrar el código genético, siendo el de Nirenberg el primero en conseguirlo. A partir de ahí, la historia es conocida…

codigo-genetico

Nirenberg recibió el Premio Nobel de Medicina en 1968, compartiéndolo con Holley y Khorana (dos químicos). ¡La época en la que los químicos eran galardonados con los Premios Nobel de Medicina!

En noviembre de 2009, la ACS (American Chemical Society) eligió el desciframiento del código genético como uno de los acontecimientos químicos relevantes (Nacional Historic Chemical Landmark). Curiosamente, fue el primer empleado del gobierno federal de Estados Unidos galardonado con un Premio Nobel. EL NIH tiene una página web con numerosa información sobre la vida e investigación de Nirenberg y, en 2004, publicó un artículo personal sobre sus investigaciones en Trends Biochem. Sci. 2004, 29, 46.

Nota: Este post participa en la XV Edición del Carnaval de Química, que aloja el blog El cuaderno de Calpurnia Tate.

carnavaldequimica_15

Bernardo Herradón García
CSIC
b.herradon@csic.es

Lavoisier y el oxígeno (1776)

Hoy hace 236 años (19 de abril de 1776) que Antoine-Laurent Lavoisier (1743-1794) presentó, en la Real Academia de Ciencias de Francia, sus investigaciones sobre la combustión; reclamando la prioridad del descubrimiento del oxígeno al identificar su papel fundamental en la combustión. Aunque el oxígeno fue aislado unos años antes, independientemente, por Carl Wilhem Scheele (1742-1786) y Joseph Priestley (1733-1804); estos no interpretaron correctamente su comportamiento químico. La prioridad del descubrimiento ha sido teatralizada en la obra Oxigeno, escrita por Roald Hoffmann y Carl Djerassi.

Lavoisier nació en el seno de una familia acaudalada. Aunque obtuvo un título de licenciado en leyes, nunca llegó a ejercer como tal. Desde joven se interesó por la ciencia y recibió clases en diversas disciplinas. Se interesó por la política, llegando a ser administrador de la Ferme Générale, una institución de carácter semi-feudal que recolectaba impuestos por mandato real.
En sus investigaciones contó con la ayuda inestimable de su esposa Anne-Marie Paulze (1758-1836), que colaboró con Lavoisier en experimentos, ilustró sus publicaciones y tradujo numerosos textos escritos por los químicos ingleses de la época.

Entre las aportaciones de Lavoisier hay que destacar las siguientes:

1) Rigor en las medidas. Perfeccionó las balanzas para hacer pesadas precisas.
2) En su libro Réflexions sur le phlogistique (1983) derribó la teoría del flogisto debido a su inconsistencia para explicar hechos experimentales.
3) Estableció firmemente el concepto de elemento químico (el que no se puede descomponer en partes más pequeñas) a diferencia de la sustancia compuesta. Caracterizó como elemento químico el oxígeno, el nitrógeno, el hidrógeno, el fósforo, el mercurio, el zinc y el azufre.
4) Comprobó que cuando un metal se oxida al aire, la ganancia de peso del material obtenido respecto al metal es igual al peso que pierde el aire.
5) También realizó experimentos en sentido contrario. Liberó oxígeno de algunos compuestos como el óxido de mercurio (repitiendo el experimento de Priestley) y comprobó que el peso perdido por el óxido era igual al ganado por el ambiente que le rodeaba.
6) Estos experimentos le llevaron a formular la ley de la conservación de la masa, que cronológicamente fue la primera ley básica en química, enunciada en 1775. La ley afirma que la masa ni se crea ni se destruye, sólo se transforma.
7) Identificó inequívocamente el papel del aire en la combustión y oxidación. Repitió los experimentos de químicos anteriores sobre el aire y sus componentes, dando nombre al oxígeno y al nitrógeno (azote, que significa ‘sin vida’ en griego, y que actualmente es el término en francés para el nitrógeno). La importancia del oxígeno para explicar las reacciones químicas fue magistralmente desvelada por Lavoisier en 1776, por lo que frecuentemente se considera a Lavoisier el descubridor del oxígeno. La historia del descubrimiento del oxígeno lleva a la reflexión sobre el descubrimiento científico y la consciencia de haber descubierto algo.

lavoisier

8 ) El nombre oxígeno procede de las palabras griegas oxys (ácido) y genos (generación). Propuso la teoría de que el oxígeno en una sustancia química producía la acidez de la misma; puesto que en aquella época, todas las sustancias con carácter ácido contenían oxígeno. Décadas después se encontró que esta regla no es general.
9) En 1783 anunció que el agua está constituida por la combinación de hidrógeno y oxígeno, redescubriendo el resultado obtenido previamente por Henry Cavendish (1731-1810). Renombra el gas inflamable de Cavendish como hidrógeno (generador de agua en griego).
10) En colaboración con el matemático Pierre-Simon de Laplace (1749-1827), realizó experimentos de calorimetría para determinar el calor desprendido en las reacciones químicas, especialmente en la producción de dióxido de carbono; que comprobó que se formaba tanto al quemar una sustancia química con carbono como en la respiración; proponiendo que ésta era una combustión lenta.
11) Probó que la composición química del carbón (el combustible usado en la época) y el diamante era la misma: carbono puro. Esto lo realizó quemando ambas sustancias (usando la luz del Sol), comprobando que se formaba la misma sustancia química (dióxido de carbono) y en la misma cantidad. Estos experimentos fueron corroborados y perfeccionados posteriormente por Smithson Tennant (1761-1815).
12) En su libro Méthode de nomenclature chimique (1787) elaboró un sistema de nomenclatura, lo que facilitaría el intercambio de información de una manera más precisa. La mayoría de la nomenclatura de Lavoisier está aún en uso.
13) En su libro Tramité Élémentaire de Chimie (1789) sistematizó los conceptos químicos conocidos en la época.
14) Colaboró en la instauración del Sistema Métrico Decimal.

Los numerosos resultados alcanzados por Lavoisier le proporcionaron gran prestigio entre la comunidad científica. Sin embargo, su vida y trayectoria científica fueron trágicamente segadas como consecuencia de la Revolución Francesa, que le condenó por sus actividades como recaudador de impuestos. A pesar de los ruegos para que se perdonara su vida en consideración a sus grandes aportaciones científicas, fue decapitado el 8 de mayo de 1794. Fue una gran pérdida para la química. El matemático Joseph-Louis de Lagrange (1736-1813) dijo “bastó un instante para separar su cabeza del cuerpo, Francia no producirá otra cabeza igual en un siglo“.

Adaptado del libro Los Avances de la Química (Libros de la Catarata-CSIC, 2012).

imagen_libro_aqis_br1

Esta entrada participa en la XIV edición del Carnaval de Química, que aloja el blog Educación Química.

Bernardo Herradón  García
CSIC
b.herradon@csic.es

Grandes químicos: William Henry Perkin

En este mes de marzo se ha celebrado el nacimiento de William Henry Perkin (12 de marzo de 1838 – 14 de julio de 1907). Sintetizó el primer colorante sintético (la mauveina o malva de Perkin). Perkin era un niño prodigio de la química. A los 15 años empezó a investigar con Hoffman en Londres. Cuando tenía 18 años, Hoffman le asignó la síntesis de la quinina, que es una sustancia química natural que se aisla de la corteza del árbol de la quina y que sirve para tratar la malaria. En aquella época había bastantes casos de malaria en Europa y se estableció un premio para el químico que lograse sintetizar quinina en el laboratorio. En esa época no se conocía la estructura de la quinina (bastante compleja), sino sólo su fórmula molecular, Hoffman y Perkin pensaron ingenuamente que se podía sintetizar por oxidación de anilina. Perkin era un entusiasta investigador; que, aparte de trabajar en el laboratorio de Hoffman, realizaba experimentos caseros (montó un laboratorio en su casa). Durante las vacaciones de la Semana Santa de 1856, Perkin realizó experimentos que no dieron lugar a la quinina; sino a una especie de alquitrán oscuro. Normalmente, cualquier químico tira ese residuo, pero Perkin se dio cuenta de que el color era persistente, los matraces no se conseguína limpiar y pensó que podía ser un colorante. Refinó los experimentos y ello dio lugar al primer colorante sintético y, lo que es más importante, promovió una investigación intensa sobre colorantes, tintas, pinturas, etc; que aún actualmente es una de las industrias químicas más potentes.

Disponer de colorantes sintéticos es una gran ventaja para la sociedad. Ya no tenemos que depender de fuentes naturales para su obtención. Las fuentes naturales frente a las sintéticas tienen varias ventajas: no se agotan, no dependen de la fuente de suministro, son más consistentes en calidad, son mas variadas en colores y son más baratas.

Por supuesto, Perkin no sintetizó quinina (hubo que esperar al año 1944, primera síntesis realizada por Woodward, Premio Nobel en 1965, y von Doering, fallecido en 2011) pero tuvo la mente lúcida para aprovechar resultados negativos de una investigación. Con la industria de los colorantes, Perkin se hizo rico muy joven y luego dedicó todos sus esfuerzos a ser uno de los químicos orgánicos más brillantes de la segunda mitad del siglo XIX; descubriendo, entre otras cosa, la reacción de Perkin.

Una excelente biografía de Perkin es Mauve, escrito por Simon Garfield.

mauve_libro

Bernardo Herradón García
CSIC
b.herradon@csic.es

Linus Pauling (1901-1994)

Linus Pauling fue un genio que modernizó la química en el siglo XX. Introdujo la aplicación de  los métodos de la mecánica cuántica a la química, siendo uno de los fundadores de la química cuántica. A partir de estos estudios, se tuvo una imagen más clara de las estructuras atómicas y del enlace químico. Fue pionero en la aplicación de los métodos de determinación de estructuras químicas para caracterizar sustancias químicas (iónicos o moleculares) y relacionar esa información para explicar fenómenos químicos, incluyendo la función biológica, y relacionándola con la estructura. Fue el gran maestro de la química estructural. Pauling estaba convencido de que entender la estructura es la clave para descifrar algunos de los misterios del universo. Su interés en biología y su amplio conocimiento de la química estructural, le convirtió en uno de los funadadores de las nuevas disciplinas de la biología molecular y la biomedicina.

pauling_einstein

Pauling nació en Oregon el 28 de febrero de 1901. Quedó huérfano de padre siendo muy joven. Por problemas económicos familiares, se le recomendó que estudiase una carrera práctica que le permitiese encontrar trabajo pronto. Por eso eligió estudiar ingeniería química en la Oregon State University (OSU), graduándose en 1922.

Desde muy joven, pensaba que la física era fundamental para entender el comportamiento químico y decidió realizar la tesis doctoral en química física. Solicito realizar la tesis en el grupo de Arthur Noyes, en el Instituto Tecnológico de California (Caltech), uno de los químicos físicos más prestigiosos de la época. Parece ser que Noyes dudó en su contratación porque Pauling era un ingeniero químico que no había asistido a cursos de química física avanzada. Sin embargo, convenció a Noyes y éste le admitió en su grupo; donde terminó la tesis en 1925.

Becado por la Fundación Guggenheim (en la época en la que ser becario era un honor y no era una palabra denigrada como actualmente) realizó estancias postdoctorales entre 1926 y 1927. Reconociendo el papel que la ciencia europea estaba realizando para entender la estructura de la materia, trabajó en Copenhage con Niels Bohr (Premio Nobel de Física en 1922), en Münich con Arnold Sommerfeld (no recibió el Premio Nobel, pero lo mereció varias veces), en Londres con William H. Bragg (Premio Nobel de Física en 1915) y en Göttingen con Max Born (Premio Nobel de Física en 1954). Sin duda, recibió una excelente formación teórica y experimental en mecánica cuántica y en cristalografía; en definitiva, en las estructuras de sustancias químicas, ya sean átomos, sales o moléculas.

De vuelta a Estados Unidos, fue contratado como profesor en Caltech donde permaneció hasta su jubilación en 1973. Tras esta fecha y hasta su muerte, el 19 de agosto de 1994, Pauling trabajó como profesor emérito en la Stanford University, donde se creó el Linus Pauling Institute (LPI). Pauling investigó de manera continuada durante 72 años, siendo un testigo privilegiado y protagonista del mayor desarrollo de la historia de la química. Posteriormente, su legado fue trasladado desde el LPI a su Alma Mater, la OSU.

Pauling fue un excelente docente y divulgador de la ciencia. En esta última faceta era frecuente su participación en medios diversos explicando ciencia. Un ejemplo se puede encontrar en el vídeo http://www.youtube.com/watch?v=KDDQMTfMZxE.

En su faceta docente, parece que era un profesor espectacular al que le gustaba ilustrar sus explicaciones teóricas con demostraciones prácticas en clase. Hay una característica que le iguala con Mendeleev. Cuando éste tuvo que explicar Química general a sus alumnos de primer curso de la Universidad de San Petersburgo, no encontró ningún libro de texto que le satisficiera; por lo que decidió escribir su libro Principios de química, cuya redacción le inspiró para crear la tabla periódica. Lo mismo le pasó a Pauling. Cuando tuvo que explicar Química general a alumnos de primer curso de Caltech, se dio cuenta que lo mejor era escribir su propio libro de texto. Así nació su libro General Chemistry, cuya primera edición se publicó en 1947, constituyendo un clásico de la enseñanza de la química desde entonces.

Realizó aportaciones fundamentales en las bases teóricas de la química, usando la mecánica cuántica para explicar la estructura molecular y el enlace químico. Introdujo conceptos fundamentales como la resonancia y la hibridación. De estos estudios surgió el libro Introduction to Quantum Mechanics with Applications to Chemistry (escrito en colaboración con E. Bright Wilson) en 1935; un clásico en química cuántica.

Pauling propulsó la Teoría de Enlace de Valencia (TEV) como una teoría más química e intuitiva que la alternativa Teoría de Orbiltaes Moleculares (TOM) para explicar el enlace y la estructura molecular. Debido que la TOM es más fácilmente implantable en un programa computacional que la TEV, aquella se desarrolló más que esta.

Pauling fue un pionero en el uso de la cristalografía en química, siendo el primer tema que desarrolló a su vuelta a Caltech en 1927. El uso de la difracción de rayos X y de la difracción de electrones le permitió profundizar en la estructura de compuestos inorgánicos (principalmente) y orgánicos y empezar a entender la naturaleza del enlace químico. De estas investigaciones surgieron las reglas de Pauling para predecir la estructura cristalina de compuestos iónicos y la escala de electronegatividad que desarrolló, que permitió determinar el carácter iónico/covalente (parcial) de los enlaces químicos.

Con estas investigaciones, Pauling se convirtió en la máxima autoridad en química estructural de la historia. Su amplio conocimiento lo plasmó en el libro The Nature of the Chemical Bond and the Structure of Molecules and Crystals; publicado por primera vez en 1939, convirtiéndose en uno de los libros científicos clásicos.

A mediados de la década de los años 1930s, Pauling empezó a interesarse en moléculas de interés biológico, especialmente proteínas. Pensaba que la función podría entenderse a partir de su estructura y que ésta podría determinarse por los métodos que él estaba usando para moléculas pequeñas, especialmente métodos de difracción.

Ya en 1934, en conexión con sus investigaciones sobre magnetismo de sustancias químicas, determinó las propiedades magnéticas de la hemoglobina. Ésta es la proteína transportadora de oxígeno en los glóbulos rojos de la sangre en los mamíferos y su estructura y funcionamiento son vitales para entender el mecanismo molecular del transporte de oxígeno y las consecuencias sobre la salud que puede tener su malfuncionamiento.

En 1940 hizo la propuesta novedosa de que la especificidad de las interacciones biológicas se debe a la complementariedad molecular, lo que permite explicar las interacciones entre los antígenos y anticuerpos (con implicaciones en inmunología) y la catálisis enzimática. En esta última área, propone que el aumento de la velocidad de una reacción enzimática se debe a la estabilización del estado de transición por interacción con la enzima. Esta hipótesis explica muchos resultados experimentales y sirve para el diseño de fármacos por inhibición enzimática.

Basándose en la complementariedad molecular, Pauling propuso en 1946 que un gen podría consistir en dos hebras mutuamente complementarias, un concepto que anticipó la propuesta de Watson y Crick para la estructura del DNA.

En los años 1940s, Pauling creó el área de la medicina molecular al proponer que la anemia falciforme estaba causada por la mutación de un único aminoácido de los 457 que forman la cadena monomérica de hemoglobina.

En 1948 propuso las estructuras secundarias de las cadenas peptídicas: la hélice alfa y la lámina beta. Su propuesta fue teórica basada en el empleo de modelos moleculares y su profundo conocimiento de la estructura molecular e interacciones no covalente. Poco después se encontró experimentalmente (por difracción de rayos X) que estas propuestas eran motivos estructurales frecuentes en la estructura de péptidos y proteínas.

Con sus propuestas y resultados experimentales sobre la estructura de proteínas, mecanismos de reacciones enzimáticas, complementariedad de proteínas y ácidos nucleicos, y en medicina molecular; se puede considerar a Pauling uno de los fundadores de la biología molecular y su moderna ramificación, la biomedicina.

En la época del Macarthismo en Estados Unidos, estuvo castigado sin pasaporte, lo que le impidió viajar a Inglaterra a para ver las fotografías de la difracción de rayos X tomadas por Rosalind Franklin. Si hubiese visto las fotografías, seguramente hubiese propuesto la estructura de doble hélice del DNA antes que Watson y Crick y la historia de la ciencia hubiese cambiado. Pero esto se ciencia ficción.

Ya en esa época había recibido el Premio Nobel de Química por sus aportaciones a la química estructural, Pacifista convencido y activo (de ahñi los problemas en su país), defendió el desarme nuclear. Por estas acciones, recibió el Premio Nobel de la Paz de 1962 (entregado en 1963). Ha sido la única persona que ha recibido dos Premios Nobel de manera individual: Química (1954) y Paz (1962).

Pauling defendió la hipótesis (que practicó) de que la ingesta de grandes cantidades de vitamina C podrían ser beneficiosa para la salud general. La vitamina C es fundamental en algunas funciones fisiológicas del organismo, como la biosíntesis de colágeno, carnitina y algunos neurotransmisores. La vitamina C es el cofactor de algunas enzimas como la prolinahidroxilasa y la lisina hidroxilasa. La vitamina C también tiene propiedades antioxidantes, siendo un  agente eficaz en combatir el estrés oxidativo. Su deficiencia causa el escorbuto.

Como todas las vitaminas, las necesidades diarias son de unos pocos miligramos. Pauling creía que la vitamina C causaba un beneficio general a la salud y abogó por la ingesta maxima de vitamina C, que él mismo practicó tomando hata 100 veces la máxima ingesta diaria de vitamina C. Hoy en día sabemos que el consumo excesivo de vitamina C causa serios problemas de salud, especialmente problemas renales.

Debido a estas prácticas, a veces se ha relacionado a Pauling con la pseudociencia. Sin embargo, Pauling no hizo pseudociencia en su investigación sobre los efectos de la vitamina C. Hizo ciencia, sólo que se equivocó. Plantear hipótesis y teorías que generaciones posteriores prueban erróneas también es ciencia. En la época en la que Pauling empezó a aplicar su teoría (en él mismo), no era descabellado pensar que una vitamina con propiedades antioxidantes podría tener un efecto beneficioso independientemenete de la dosis. También este ejemplo, muestra las dos caras de las sustancias químicas y el hecho de que la dosis determina el efecto.

Sitios de interés y bibliografía:

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1954/pauling-bio.html#

http://en.wikipedia.org/wiki/Linus_Pauling

Linus Pauling Institute

Linus Pauling in his own words: selected writings, speeches, and interviews

G. R. Desiraju, Nature, 2000, 408, 407.

Libros de Pauling y sobre Pauling

La obra de Pauling en los fondos de la OSU

Pauling y el enlace químico (en los fondos de la OSU)

Pauling y la investigación en hemoglobina y la anemia falciforme (en los fondos de la OSU)

Pauling y la carrera por descubrir la estructura del DNA (en los fondos de la OSU)

The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry

Introduction to quantum mechanics: with applications to chemistry

General Chemistry

Linus Pauling and the Chemistry of Life (escrito por Tom Hager)

Honores recibidos por Linus Pauling (en los fondos de la OSU)

Pauling como maestro

Actividades por la paz (en los fondos de la OSU)

Bernardo Herradón García
CSIC
b.herradon@csic.es