Archivado con la Etiqueta: Carbohidrato

La química de los alimentos. Edulcorantes nutritivos.

Los Hidratos de carbono o carbohidratos son sustancias que dan sabor dulce, aportan calorías (4 Kcal/g) y además actúan como conservantes. A este grupo pertenecen la glucosa, la fructosa, la sacarosa, la lactosa, la maltosa, la galactosa y el azúcar invertido. Estructuralmente, estos compuestos están formados por una o más unidades de monosacárido. En función de la cantidad de unidades por las que esté formado el carbohidrato recibe el nombre de monosacárido (una unidad); disacáridos (2 unidades); oligosacáridos (entre 2 y 20 unidades) y, polisacáridos (más de 20 unidades).

Continuar leyendo

Recordando a Emil Fischer el día de la concesión del Premio Nobel de Química

En el día de la concesión del Premio Nobel de Química, hay que recordar a uno de los gigante de la química, que recibió el segundo Premio Nobel (1902) de la especialidad: Hermann Emil Fischer; que nació el 9 de octubre de 1852

Recibió el Premio Nobel de Química en 1902 por sus investigaciones en moléculas de interés biológico: las purinas (primera imagen) y los azúcares (segunda imagen). La conferencia de aceptación del Premio Nobel se puede descargar aquí. Las imágenes con las estructuras de las purinas y las aldohexosas (carbohidratos) caracterizadas y sintetizadas por Fischer y su grupo se han obtenido de esta fuente.

Su investigación abarcó prácticamente todos los aspectos de la química orgánica de su tiempo, desde péptidos y proteínas a heterociclos, pasando por estereoquímica y síntesis orgánica.

Se le puede considerar uno de los padres de la bioquímica por sus investigaciones en moléculas de interés biológico y su hipótesis (metafórica) de la llave y la cerradura para explicar la especificidad enzimática; lo que constituye la base del reconocimiento molecular.

También fue un pionero en la investigación en química médica, sintetizando el primer barbiturato (el barbital, en la imagen) de utilidad terapéutica como sedante e hipnótico.

Durante la Primera Guerra Mundial fue el responsable de organizar la producción química alemana.

Su muerte no está clara, se dice que se suicidó (15 de julio de 1919), pues padecía cáncer de intestino muy avanzado y depresión causada por la muerte reciente de dos hijos (en 1915 y 1917).

Nota: Este post participa en el XXVIII Carnaval de Química (el del níquel, Z = 28), que aloja el excelente blog Flagellum. Impulsando la comprensión de la ciencia.

 

Bernardo Herradón
CSIC

Emil Fischer

9 de octubre de 1852. Nacimiento de Emil Fischer. Premio Nobel de Química en 1902 por sus investigaciones en moléculas de interés biológico: las purinas y los azúcares. Su investigación abarcó prácticamente todos los aspectos de la química orgánica de su tiempo, desde péptidos y proteínas a heterociclos, pasando por estereoquímica y síntesis orgánica. Se le puede considerar uno de los padres de la bioquímica por sus investigaciones en moléculas de interés biológico y su hipótesis (metafórica) de la llave y la cerradura para explicar la especificidad enzimática; lo que constituye la base del reconocimiento molecular. Durante la Primera Guerra Mundial fue el responsable de organizar la producción química alemana. Se suicidó el 15 de julio de 1919 posiblemente como consecuencia de la muerte de dos de sus hijos durante la guerra.

Bernardo Herradón García
CSIC
b.herradon@csic.es

Publicaciones_2010-2008

1) A Universal Scale of Aromaticity for π-Organic Compounds. M. Alonso, B. Herradón. J. Comp. Chem. 2010, 31, 917-928.

Aromaticity is an essential concept in chemistry, invented to account for the stability, reactivity, molecular structure, and properties of many organic and inorganic compounds. In recent years, numerous methods to quantify aromaticity based on the energetic, magnetic, structural, and electronic properties of molecules have been proposed but none of them is universal. The inability of establishing a universal scale of aromaticity based on a single parameter is due to the multidimensional character of this phenomenon. Consequently, aromaticity analyses should be carried out by employing a set of aromaticity descriptors on the basis of different physical manifestations of aromaticity. Here, we report a universal scale of aromaticity for π-organic compounds based on the Euclidean distance between neurons in a self-organizing map. The most widely used aromaticity indicators have been used as molecular descriptors, and so our approach provides the first scale of aromaticity which contains the energetic, magnetic, and structural aspects of this property. The method is applicable to a wide variety of unsaturated organic compounds and allows quantification of both aromaticity and antiaromaticity. Additionally, the position of a compound on the bidimensional map determinates immediately the following: (a) the group (aromatic, nonaromatic, or antiaromatic) to which the system belongs, (b) their degree of π-electronic delocalization, and (c) the similarity in aromaticity/antiaromaticity between different compounds. This new scale of aromaticity is able to indicate the expected order of aromaticity of analogues of fulvene and heptafulvene, heteroaromatic species, substituted benzenes, and functionalized cyclopentadienyl compounds.

jcc_10_ga

Continuar leyendo